

# **EWI Security of Supply Update**

Simulation of current gas market developments in Europe with a special focus on Germany



Cologne |09.03.2015 | Dr. Harald Hecking, Simon Schulte, Florian Weiser



Energiewirtschaftliches Institut der Universität zu Köln



### **1. Introduction**



### Low gas storage levels because of low oil prices et li

#### Oil market developments foster withdrawals from gas storages

- Significant part of long-term gas import contracts based on oil-indexation
- Price adjustments after 3 or 6 months, thus low contract-prices expected
- Traders have incentives to sell gas now

Gas storage in Germany and in Europe on a lower level than usually at the end of February.



Sources: World Bank (2015), own calculations based on GIE (2015)

### **Risks for European gas supply**



#### Risk factor 1: Ongoing gas dispute between Russia and Ukraine

"Therefore, gas delivery to Ukraine in the ordered amount of 114mcm will lead to a complete cessation of Russian gas supplies to Ukraine in just two days, which creates serious risks for gas transit to Europe." (Alexei Miller, Gazprom)

#### **Risk factor 2: Low temperatures in March**

• In March 2013, average daily gas demand in Germany stood at 410 mcm/d

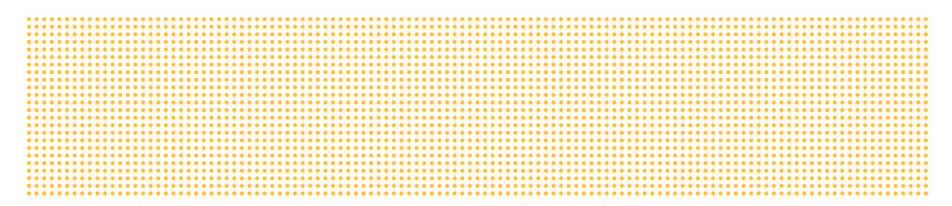


Source: AGEB Quartalsbericht (2014)

## **Simulation of disruption scenarios**

## ewi

#### Methodology


- Use of the European gas market simulation model TIGER
- Simulation of two disruption scenarios (A and B) for 2015
  - current low storage levels
  - 1 month disruption starting on March 1st.
- Assuming a high gas demand as in March 2013



# Is gas supply in Europe secure in March 2015?



### 2. Results



## **No disruption of Russian gas flows** German gas supply structure 2015



• Despite low storage levels, a March cold spell would not cause any supply problems in DE

German gas storages would contribute up to 200 mcm/d

.....

.....

## **A) Disruption of Russia-Ukraine gas flows** German gas supply structure 2015



• In a Russia-Ukraine disruption plus March cold spell, German gas demand could be satisfied

German gas storages and increased Nord Stream imports secure supplies

. . . . . .

Higher gas flows to Austria (via Oberkappel & Burghausen) and Czech Republic (via OPAL)

## **A) Disruption of Russia-Ukraine gas flows** Gas balance Germany on March peak day



....

• In a Russia-Ukraine gas flow disruption plus March cold spell, German gas storages contribute ca. 250 mcm on the peak demand day.

## A) Disruption of Russia-Ukraine gas flows



- In a disruption of Russian-Ukraine gas flows German gas storages would reach critical filling levels
- Average storage levels would be below 20% for 54 days

....

....

 Depending on individual storage properties, low filling levels for a too long time period could cause problems with the geological stability of the storage

## A) Disruption of Russia-Ukraine gas flows Maximum daily supply shortfall (normal weather)



• Given a normal weather pattern in March and a disruption of Russia-Ukraine gas flows, gas supplies could be secured in Europe by increased storage withdrawals and reverse flows

## A) Disruption of Russia-Ukraine gas flows Maximum daily supply shortfall (March cold spell)



- Under a March cold spell, Bulgaria, Macedonia and Bosnia/Herzegovina would suffer from serious supply shortfalls with some days in March when shortfalls would exceed 50% (BG), 100% (MK) und 28% (BA)
- Other countries such as Hungary, Slovakia or the Ukraine benefit from their (compared to the 12 demand) large storage capacities and reverse flows

## **B) Full disruption of Russian gas flows** German gas supply structure 2015

....

. . . . . .

. . . . . .



- In a full disruption of Russian exports (normal weather), German gas storages would fill the gap
- Assuming additionally a March cold spell, German gas demand could not be fully supplied
   13
- Increased imports from NL and AT plus storage withdrawals would help to limit shortfalls

## **B) Full disruption of Russian gas flows** Gas balance Germany on March peak day

. . . . . .



eui

- In either a 1-month full disruption of Russian gas or in a March cold spell, German gas demand would be secure, mainly because of increased storage withdrawals (ca. 200 mcm/d)
- In a full disruption of Russian gas plus a March cold spell, the German gas market could be supplied with a maximum of 436 mcm/d, with German storages contributing roughly 270 mcm/d<sub>4</sub>

## **B) Full disruption of Russian gas flows** Storage levels in Germany reach critical levels



- In a full disruption of Russian gas flows German gas storages would reach critical filling levels
- For 63 days, average storage levels would be below 20%, for 3 days even below 10%

....

.....

• Depending on individual storage properties, low filling levels for a too long time period could cause problems with the geological stability of the storage

eui

# B) Full disruption of Russian gas flows

Maximal daily supply shortfalls by country (normal weather)



 In a full disruption of Russian gas with normal weather, only Poland, Finnland and Bosnia/Herzegovina would be affected.

....

## **B)** Full disruption of Russian gas flows

## ewi

Maximal daily supply shortfalls by country (March cold spell, current LNG volumes)



• In a full disruption of Russian gas plus a cold March, supply shortfall in many European countries could occur (assuming current levels of LNG imports to Europe).

....

Countrywise supply problems could increase/decrease with different cold spell gas demand assumptions

## B) Full disruption of Russian gas flows

Maximal daily supply shortfalls by country (March cold spell, additional LNG imports available after 10 days)



....

....

- Assuming additional LNG imports arriving in Europe 10 days after the disruption starts, supply
  problems would occur in Eastern Europe, whereas Western and Central Europe were fully
  supplied
- LNG availability (in particular the time lag until additional ships reach Europe) is crucial to the 18 supply situation

### Which factors could alter the picture?



#### **Uncertainty of events**

- Colder/warmer weather (hence, gas demand) in different countries/regions, especially during March cold spell
- Additional disruptions of gas infrastructure

#### **Uncertainty of behavior**

- Longer/shorter duration of a disruption of Russian gas
- Will European countries really perfectly cooperate (as assumed)?

#### Limited data

- Higher/lower production flexibility for certain gas fields (e.g. Groningen field)
- More/less flexibility from LNG imports (position of LNG vessels not modelled)
- Local infrastructure specifics in certain countries (could cause regional supply problems)
- Fuel switching to other primary energy
- Minimum filling level of certain storages because of geological stability



### **3.** Conclusion



## Conclusion

# ewi

#### Germany

- A 1 month **Ukraine transit disruption** would not cause any supply problems for Germany even during a very cold March
- Supply would also be secure during a 1 month **full disruption** of Russian gas deliveries with normal weather conditions because of gas storages
- In a very cold March as in 2013, a 1 month full disruption of Russian gas deliveries would cause minor supply shortages (ca. 3% of daily demand) with gas storages providing most of the needed gas
- However, gas storages would reach critical levels, signaling that securing supply would stress the gas system to the utmost

#### Europe

- In a 1 month **Ukraine transit disruption** with a cold March Bulgaria, Bosnia/Herzegovina and Macedonia would suffer from supply shortages
- Many countries including Ukraine itself would secure supply by increased storage withdrawals and reverse flows
- During a 1 month **full disruption** of Russian gas deliveries with a March cold spell, gas supply in many Eastern European countries would fall short, Ukraine included
- France's security of supply heavily relies on additional LNG imports

## ewi

## Thank You for Your Attention Any Questions or Remarks?

#### Dr. Harald Hecking

Institute of Energy Economics at the University of Cologne (EWI) Alte Wagenfabrik Vogelsanger Str. 321a 50827 Cologne, Germany Tel. +49 – 221 27729 221 Email: harald.hecking@ewi.uni-koeln.de





### **Appendix – Assumptions**



## ewi

## **Assumptions**

### Demand during the cold spell in March

|         | Normal weather |                | Cold spell  |                |
|---------|----------------|----------------|-------------|----------------|
|         | Peak demand    | Average demand | Peak demand | Average demand |
| Country | (mcm/d)        | (mcm/d)        | (mcm/d)     | (mcm/d)        |
| DE      | 279            |                |             |                |
| DK      | 14             | 14             | 20          | 15             |
| FR      | 181            | 178            | 240         |                |
| BE      | 68             |                | 85          |                |
| NL      | 137            | 135            | 182         |                |
| IT      | 267            | 263            | 287         | 237            |
| GB      | 274            | 270            | 351         | 298            |
| CZ      | 35             | 35             | 40          | 33             |
| HU      | 39             |                | 47          | 36             |
| SI      | 3              | 3              | 4           | 3              |
| ES      | 113            | 110            | 112         | 86             |
| PT      | 15             | 15             | 15          | 13             |
| PL      | 61             | 61             | 73          | 72             |
| AT      | 31             | 30             | 41          | 37             |
| SK      | 14             | 14             | 19          | 17             |
| UA      | 175            | 175            | 210         | 209            |
| BG      | 12             | 12             | 15          | 14             |
| GR      | 13             | 13             | 16          | 15             |
| RO      | 44             | 44             | 53          | 53             |

# ewi

# Assumptions

## LNG availability

- LNG availability: 54,5 bcm/y and 166 mcm/d
- Two sensitivities:
  - 1) No additional LNG imports available during March
  - 2) Additional LNG imports available 10 days after the disruption starts