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Abstract

The investment decision on the placement of wind turbines is, neglecting
legal formalities, mainly driven by the aim to maximize the expected annual
energy production of single turbines. The result is a concentration of wind
farms at locations with high average wind speed. While this strategy may be
optimal for single investors maximizing their own return on investment, the
resulting overall allocation of wind turbines may be unfavorable for energy
suppliers and the economy because of large fluctuations in the overall wind
power output. This paper investigates to what extent optimal allocation of
wind farms in Germany can reduce these fluctuations. We analyze stochastic
dependencies of wind speed for a large data set of German on- and offshore
weather stations and find that these dependencies turn out to be highly
nonlinear but constant over time. Using copula theory we determine the
value at risk of energy production for given allocation sets of wind farms
and derive optimal allocation plans. We find that the optimized allocation
of wind farms may substantially stabilize the overall wind energy supply on
daily as well as hourly frequency.
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1. Introduction

Wind power is one of the world’s largest and most accessible sources of

renewable energy. However, intermittency presents a barrier for wind power

to meet the world demand for electricity. Since wind shows sudden changes,

wind power shows a high variability. In this paper, we analyze to what ex-

tent the variability may be reduced by optimally located power stations. Our

analysis is based on models of wind speeds from different regions of Germany.

Since wind speeds and their dependencies are highly non-Gaussian, nonlin-

ear times series models and vine copula constructions are applied. Given the

positions of wind farms, the models assess the lower quantiles of the distri-

bution of the overall produced wind power. We maximize these quantiles

with respect to the locations of wind turbines which are subject to certain

constraints to obtain optimal allocation plans for wind energy production.

The study focuses on German on- and offshore data and identifies the

optimal allocation of wind farms across the country. However, the proposed

methodology may be applied to other regions as well. We focus on Germany

for several reasons. Firstly, Germany incorporates one of the world’s largest

markets for wind energy. In 2007, nearly 25% of the world-wide wind capacity

was installed in Germany (Windpower monthly, January 2008), followed by

the USA with about 19%. Since wind energy accounts for over 9% of the

whole electricity production in Germany, energy suppliers in this country

are especially affected by the variability of wind power so that their need to

smooth the wind power supply is crucial.
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Although Germany exchanges power with foreign countries we do not

include data from other countries in our study. We think, however, that a

study similar to ours on a European level would be interesting. This would

be of special relevance in the future, when interconnection capacities between

countries are further extended and feed-in tariffs and distribution of renew-

able energies are jointly organized. At the moment, however, we believe

that a focus on one country conforms more to the actual situation since the

markets are still organized on national levels.

The allocation of wind energy production in Germany is highly imbal-

anced due to political reasons and feed-in tariffs to encourage the investment

in renewable energies. Figure 1 depicts its spatial distribution (the data is

provided by the four German transmission system operators (50Hz, Amprion,

EnBw, Transpower)). The wind power production is mainly concentrated on

the coastline and in eastern Germany. Note that in 2009 (and still) the

amount of offshore wind power in Germany is negligible. Over time, produc-

tion is highly volatile. Figure 2 shows the produced amount of wind power

for 2009 on a daily basis. It varies between 1% and 70% of the installed

capacity. This paper analyzes how and to what extent an optimal distribu-

tion of wind power production could smooth the overall wind power output.

The necessary redistribution could be achieved by either installing new wind

turbines or by repowering, i.e., replacing turbines by more powerful ones.

The possibility of smoothing wind power by geographical dispersion of

wind farms or by interconnecting existing dispersed wind farms is studied
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Figure 1: Produced wind energy in Germany in 2009. Dark red
regions indicate high values of produced energy, dark blue regions
indicate no produced energy. The figure is based on data of the
German transmission system operators 50Hz, Amprion, EnBw and
Transpower for the year 2009 and visualized by 50000 random points
across the coordinates of Germany. The color of each rectangle
corresponds to the total amount of wind energy produced in this
rectangle in 2009. Apparently, wind energy is produced mainly at
the coasts and in eastern Germany.

in several papers. It has a long history going back to Kahn (1979) who

was the first to systematically analyze these effects for arrays of wind farms

of different sizes. He used wind data from California and found that the

reliability of the wind power output improved with the sizes of the arrays. For

more recent studies showing that the interconnection of wind farms reduces

the variability of their summed output, see among others Katzenstein et al.

(2010), Archer and Jacobson (2007), Czisch and Ernst (2001), Giebel (2000)
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Figure 2: Overall wind energy produced in Germany in 2009 on a
daily basis in percentage of installed capacity. The energy produced
varies from nearly 70% to 1% of the installed capacity (data is
provided by the four German transmission system operators 50Hz,
Amprion, EnBw and Transpower).

Milligan and Porter (2005), and Drake and Hubacek (2007).

In particular, Archer and Jacobson (2007) find that at least 33% of the

average power output of 19 interconnected wind farms in the central United

States are online at a probability level of 12.5%. This is the average outage

time (scheduled and unscheduled outages) of coal plants in the United States

(see, e.g., Giebel (2000)). In contrast, 0% of the average power output of

single farms may be online to this probability level. Drake and Hubacek

(2007) go one step further. They analyze the average power and standard

deviation of several allocations of capacity among 4 simulated wind farms in

the UK to find the allocation with the least amount of wind power variability.

They estimate the correlations of the wind speeds at single stations and

use mean-variance portfolio theory to find optimal locations for wind power
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capacity with respect to the variance of the overall power output.

The present paper analyzes optimal allocations of wind farms across Ger-

many. However, when maximizing the part of the wind energy that may

provide a stable baseload, the lower quantiles (value at risk) of the overall

energy production are more important than its variance. Therefore, this pa-

per focuses on the allocation of wind turbines by maximizing lower quantiles

of the power supply instead of minimizing the variance. While the optimiza-

tion of the variance only requires estimates of the marginal variances and

covariances, the assessment of the quantiles of the overall power output is

not trivial. It requires the modeling of the marginal distributions and the en-

tire dependence structure of the wind speeds of the considered regions. The

reason for this is the non-normality of the distributions of wind speeds as

well as the nonlinearities of their dependence. Whenever multivariate data

is not normally distributed, the quantiles of sums of margins may not be

calculated from sums of variances and covariances.

Therefore, we apply nonlinear time series models and copula methods in

this study. Copula functions capture the complete dependence structure of

random variables. They may be applied if the random variables are highly

non-normal as it is the case for wind speeds. In our case, the dimensional-

ity of the data set is high (40 dimensions) and the dependency structure is

heterogeneous, i.e., the kind of nonlinear pairwise dependence varies between

dimensions. In such a setting, most multivariate copulas are unfavorable as

they assume homogeneous dependency structures across dimensions. There-
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fore, we use multivariate pair copula constructions as originally introduced

by Joe (1996). Based on a hierarchical tree of 2-dimensional copulas, they

allow for flexible modeling of heterogeneous dependence structures in higher

dimensions.

The resulting model enables us to optimize the allocation of wind energy

production with respect to certain constraints. The models are on daily

frequency, while the results are evaluated on daily and on hourly frequencies.

Firstly, we find the overall best allocation of wind energy production with

respect to lower quantiles of the overall production. The result enables us to

discuss the best case, i.e., to what maximal extent wind energy in Germany

may be online for a given probability level. Secondly, we start from the

status quo and optimize the wind power allocation when repowering and

extending the installed wind capacity in Germany. This enables us to identify

regions in which new wind power capacity would be most useful to improve

the overall supply stability, i.e., the reliability of wind energy. The results

show that repowering and expansion should be forced at the coasts and the

offshore regions as well as in some regions in southern Germany and should

be suppressed in most parts of eastern Germany.

The remainder of the paper is structured as follows. Section 2 presents the

data set of wind speeds and the multivariate time series model which is based

on multivariate vine copula constructions. The concept of these copulas is

summarized in B. In section 3, the model for the wind data set is used to find

optimal allocation and expansion plans for wind turbine positions. Section
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4 concludes.

2. Data and wind speed models

In this section, the data sets of wind data used for our study and a time

series model based on pair copula functions are presented. The data set

(onshore and offshore data) was provided by the German weather service. It

consists of daily and hourly means of wind speeds measured at 40 (daily) and

39 (hourly) German onshore and offshore weather stations1 from 2005-01-01

to 2010-12-31, respectively. For most of the stations (36 stations), in partic-

ular the on-shore stations, longer time series are available. When possible

we therefore use data beginning from 1980-01-01, but then explicitly indicate

this. The offshore stations are Greifswalder Oie, Hallig Hooge, Helgoland,

and UFS Deutsche Bucht. The resolution is 1
10

m/s. Leap days are erased

from the sample.

In the daily data, except for the offshore station UFS Deutsche Bucht,

missing data are replaced by the means of hourly data from the same days,

if at least one hour of data is available. If no hourly data is available, data

are replaced by data of the same station and day of a randomly chosen

1Aachen, Augsburg, Bamberg, Berlin-Tempelhof, Bremen, Cuxhaven, Dresden-
Klotzsche, Duesseldorf, Emden, Erfurt-Weimar, Fichtelberg, Frankfurt/Main, Goerlitz,
Greifswalder Oie, Hallig Hooge, Hamburg-Fuhlsbuettel, Hannover, Helgoland, Hof, Ho-
henpeissenberg, Kahler Asten, Kempten, Konstanz, Leipzig-Halle, Lindenberg, Magde-
burg, Meiningen, Neuruppin, Nuernberg, Potsdam, Rostock-Warnemuende, Saarbruecken-
Ensheim, Schleswig, Schwerin, Straubing, Stuttgart-Echterdingen, UFS Deutsche Bucht
(daily data only), Westermarkelsdorf, Wuerzburg, Zugspitze
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year. An average of 0.60% of the data is missing before inserting means of

hourly data and 0.28% after inserting hourly data. The longest time period

of missing data in the time interval from the year 2005 on is 31 days for the

station Greifswalder Oje. The length of the gaps is much smaller for most

of the stations. Thee fourth longest gap is 9 days for the stations Emden

and Erfurt-Weimar. The average length of missing data is 2.1 days with on

average 4.9 gaps per station. For the hourly data, we replace missing data

by the mean of data before and after the gap if the gap is not longer than

12 hours. For gaps longer than 12 hours, we use data from the same day

of a randomly chosen year to maintain the intraday structure of the wind.

On average 0.23% respectively 0.21% of the data is missing before and after

inserting the means of adjoining data.

The data of the offshore station UFS Deutsche Bucht, which is located on

an unmanned lightvessell in the north sea, is of rather poor quality. On the

hourly frequency the amount of missing data in the considered time interval

is around 12% and we do not use this station on this frequency. Even on

daily frequency, there is a period of 8 weeks without data. Again, we replace

missing daily data by the mean of hourly data from the same day, if available.

To conserve the dependencies of the data, this time we do not replace the

quite long remaining missing parts by data from other years as above, but

replace it by daily means of data of NASA’s QSCAT satellite. The QSCAT

data consist of two measurements a day till 2009-11-23 for the respective area

and are provided by Remote Sensing Systems (http://www.remss.com/). For
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days where data of UFS are available, the original data and the satellite data

fit very well with an UFS mean of 7.98m/s and a satellite mean of 8.20m/s

(see, e.g., Beaucage et al. (2007) and the references therein for discussions

regarding satellite wind data).

Table 2 (Appendix) shows descriptive statistics of the 39 (40) stations as

well as geographical altitude of the station and wind detector height above

ground. Figure 3 shows histograms of 6 representative stations (daily data).

The data of all stations are heavily skewed. The mean values of the stations

vary from 2m/s to more than 8m/s. The p-values of the Ljung-Box test and

Engle’s ARCH test are below 10−50, indicating autoregressive structure and

heteroskedasticity in the data.

In the next subsection, we present univariate time series models to clean

the time series from these effects. The correlation structure of the filtered

residuals is further analyzed in subsection 2.2. For hourly data (and other

intraday frequencies) we find intertemporal cross correlation of the residuals.

These vanish for daily frequencies but prohibit a generalization of the hourly

models to the multivariate case. In subsection 2.3, we therefore combine only

the daily models into a multivariate model. This is done by modeling the

dependence of simultaneous residuals by pair copula constructions.

2.1. Univariate model

We model the univariate time series by a seasonal ARMA model, which

was recently proposed for wind speed modeling by Benth and Benth (2010).
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Figure 3: Histograms of the wind speeds in m/s of 6 representative
stations for the daily mean of wind speeds for the longer data set
starting 1980-01-01. All distributions are highly skewed to the right
and the distributions are clearly different.

First, the skewness of the wind speed data (see figure 3) is removed by

applying the Box-Cox transformation,

X =
Y λ − 1

λ
,

where Y is the time series of wind speed and the parameter λ is estimated

by maximum likelihood (see, e.g., Box and Cox (1964)). The resulting time

series Xt are modeled by ARMA(p,q) models with a seasonal functions St
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and seasonal volatilities σt to account for heteroskedasticity.

Xt = St +

p
∑

i=1

φiXt−i +

q
∑

j=1

θkǫt−j + εt, (1)

with

εt = σtηt.

For daily data, where an increment in t corresponds to a day, we use

seasonal functions of the form

St = a0 +

1
∑

k=0

a2k+1 cos

(

(2k + 2)πt

365

)

+

1
∑

k=0

a2k+2 sin

(

(2k + 2)πt

365

)

and

σ̂2
t = c0 +

3
∑

k=1

ck cos

(

2kπt

365

)

,

respectively, where σ̂2
t is the average historical variance. For hourly data (as

well as for 3, 4, 6 and 12 hour data), we add further seasonal intraday terms

consisting of hourly (respectively 3,4,6,12-hourly) dummies. The models are

estimated for each of the time series individually. The resulting standardized

residuals ηt for each of the time series pass Engle’s ARCH test, i.e., they

show no significant heteroscedasticity.

2.2. Correlation analysis of the residuals

The optimal allocation of wind turbines relies on the dependence structure

of wind speeds at different locations. We model these, as discussed in the next
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subsection, by the dependence of the residuals ηt for the same t but different

time series. For the justification of this approach, we have to ensure that the

dependencies of concurrent residuals capture the complete dependence of the

time series and that these dependencies are constant over time.

For the first point, we look at the pairwise cross-correlations of the em-

pirical innovations ηt, i.e., the correlations of ηRegion 1
t with ηRegion 2

t+l , where

the parameter l is an integer-valued lag parameter. Our approach of multi-

variate modeling is justified, when there is no cross-correlation for lags not

equal to zero. Figure 4 shows the results for the pair Augsburg and Bam-

berg. The results are representative for the results of the other pairs. Shown

are cross-correlations for l = −15..15 for the residuals of the time series on

frequencies of 1 hour, 3 hours, 4 hours, 6 hours, 12 hours and 1 day. For fre-

quencies of 1 day, there is no significant cross-correlation for lags not equal

to zero. This justifies a multivariate model of the time series, where the

dependence between dimensions is modeled by the dependence of concur-

rent residuals on a daily frequency as in copula-Garch models. However, on

intraday-frequencies, there is significant cross-correlation for lagged residuals

and the approach is not adequate since lagged residuals contain much infor-

mation on the dependence structure which is not captured by the dependence

of simultaneous residuals. Intuitively, this may be explained as follows. The

innovation ηt corresponds to a random change in the wind speeds on the

considered frequencies. Due to the finite velocity of the wind flow over the

country, random changes in the wind in one region lead to delayed changes
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in other regions, but not to simultaneous ones. On daily frequency the delay

is small compared to the time unit, while on intraday frequencies the effect

is not negligible.
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Figure 4: Lagged cross-correlation of the residuals ηt for the pair
Augsburg and Bamberg for models on different frequencies of 1 to
24 hour grid. Shown are the values of the correlations and the 95%
confidence intervals for the correlations in independent data. The
copula approach for the multivariate models is only possible, when
the cross-dependence of the residuals is negligible for lags not equal
to zero. As shown in the figure, only for daily data this assumption
is justified. For hourly data, actually most of the dependence is
captured by lagged residuals and even on a 12 hour grid, the cross-
correlation is significant.

Furthermore, it is important that the dependence between the wind speeds

of different regions is constant over time. Otherwise, the optimal allocation

of wind turbines would change over time and it would not be feasible to
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re-allocate the wind turbines with the changing dependence. We look at

pairwise rank correlation coefficients of wind speed residuals ηt at two loca-

tions at a time and use daily data. We choose rank correlation since it is

robust to non-Gaussian data. Figure 5 shows 8 representative series of rank

correlation coefficients estimated on a backward looking rolling window of 365

days window length on the extended data set beginning in 1980. The shown

estimated values of the correlation vary in time but stay between certain

levels. They may therefore be assumed to be constant in time. Additionally,

the levels of the correlation of the different pairs are different, i.e., different

stations show different dependence of the wind speeds.

Figure 6 shows a histogram of the values with all 36(36−1)/2 = 630 pair-

wise rank correlations computed on the longer data set beginning in 1980.

The lowest rank correlation is 0.04 for the pair Rostock-Warnemuende and

Saarbruecken-Ensheim while the largest value is 0.894 for the pair Berlin-

Tempelhof and Potsdam. In the second subfigure, the pairwise correlations

are plotted versus the geographical distance of these pairs. The distances

between two stations are calculated from values of longitude and latitude by

the haversine assumption, i.e., assuming a spherical earth. As intuitively ex-

pected, the correlation tends to decrease with growing distance. The depicted

fit of an exponential model according to ρ ∝ exp(−distance/D) has a decay

parameter D of 455 km and an intercept of ρ = 0.88 for zero distance. The

results are consistent with the studies of Giebel (2000) and Katzenstein et al.

(2010). Both studies find such an exponential relationship between correla-
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tion of wind speeds and distance with decay parameters between 305 km and

723 km. Giebel (2000) analyzes wind speeds in Europe, while Katzenstein

et al. (2010) concentrate on Texas. Note, however, that our study relates to

the model residuals ηt, i.e., the not explained changes in wind speeds, while

the cited studies use the wind speeds itselfs. The result of decreasing cor-
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Figure 5: Pairwise rank correlation of the residuals ηt of the wind
speeds of the stations (in ascending order) Saarbruecken-Ensheim
and Rostock-Warnemuende, Zugspitze and Greifswald, Konstanz
and Berlin-Tempelhof, Rostock-Warnemuende and Nuernberg,
Stuttgart-Echterdingen and Magdeburg, Straubing and Kahler As-
ten, Schleswig and Berlin-Tempelhof, Kahler Asten and Frank-
furt/Main, Magdeburg and Berlin-Tempelhof. The correlations are
computed for daily data with a backward-looking moving window
of length 365 days.

relations with growing distance suggests that geographical diversification of

wind turbines over large distances results in a lower variance of the overall

energy production. However, only in the case of Gaussian distributions and

Gaussian dependence structure does the knowledge of the correlation directly

allow the calculation of the lower quantiles. In the case of non-Gaussian dis-

16



0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

F
re

qu
en

cy

Rank Correlation

Histogram of Pairwise Rank
Correlation of residuals

0 200 400 600 800
0

0.2

0.4

0.6

0.8

1

Distance [km]

R
an

k 
C

or
re

la
tio

n

Pairwise Rank Correlation
vs. Distance

Figure 6: Histogram of the pairwise rank correlation of the residuals
ηt of the wind speeds of all considered stations (left) of the longer
data set of daily data beginning in 1980 (data of 36 stations). Scat-
ter plot of the pairwise rank correlation of all stations against their
geographical distance (right). Fitted is an exponential modell ac-
cording to ρ ∝ exp(−distance/D) with a decay parameter D of
455 km and an intercept of ρ = 0.88 for zero distance.

tributions, minimizing the variance of the energy production may not result

in optimal quantiles.

2.3. Multivariate copula model and calibration

Since the dependence of the residuals is highly non-Gaussian, it is not en-

tirely captured by correlation measures. An exact multivariate model, how-

ever, is possible if based on copula functions. Copulas are the most general

dependence concept for random variables. A short introduction to copulas

is given in B.1. Figure 7 shows the dependency function λ for the example

of two pairs of stations. Originally introduced in Genest and Rivest (1993)

for Archimedean copulas, the λ-function is defined by λ(v) := v − K(v),

where K is the distribution function of the (empirical) copula. Thus, it
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describes the dependence structure of a given data set and can be used to

identify the parametric copula family that provides the best fit. The empiri-

cal λ-function estimated from the wind data of these pairs is denoted by the

black line. The green, red and blue lines indicate the theoretical λ-functions

of data with Clayton, Gaussian and Clayton survival copula with adequate

parameters. In both cases, the empirical dependence deviates from Gaus-

sian dependence structure, while Clayton dependence structure and Clayton

survival structure capture the respective dependencies adequately. This is

also confirmed by a formal Goodness-of-Fit test, which is based on the λ-

function (see Genest et al., 2009), where the P-values are given in the legend

of figure 7 (larger P-values correspond to a better fit than smaller P-values).

Thus, the dependence in our data set is non-Gaussian and heterogeneous,

i.e., its type is varying across the dimensions. The heterogeneous structure

together with the high dimensionality of our problem complicates the finding

of an adequate copula function (see B.1 for a discussion). Solutions are pair

copula constructions (PCC) which are described in detail in B.2. These con-

structions consist of multiple bivariate copulas and flexibly capture different

pairwise dependence structures between different dimensions of the time se-

ries. Analogously to copula-GARCH models, the PCCs are embedded into

the model by transforming the residuals ηt to the unit interval and modeling

the dependence of these uniformly distributed residuals by PCC.

The calibration of the entire model (univariate time series and depen-

dence structure) to the data set of wind speeds involves both the estimation
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Figure 7: Plot of the λ-Function λ(v) := v−K(v) as introduced by
Genest and Rivest (1993) for the examples of the pairs Helgoland
and Rostock-Warnemuende as well as Bremen and Saarbruecken-
Ensheim. In both cases, the empirical line (black) deviates clearly
from the Gaussian dependence structure (red line). Furthermore,
the dependence structure in both cases is different. In the first case,
the dependence fits very well to a Clayton copula (high dependence
at the lower quantiles of the distributions). In the second case, the
dependence is more of Clayton survival structure (high dependence
at the upper quantiles of the distributions).

of the parameters of the model for the marginal time series as well as the

estimation of the dependence structure, i.e., the PCC. Since the simultane-

ous estimation of the marginal models and the copula structure by maximum
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likelihood becomes computationally very complex for higher dimensions, we

use the inference for margins method and first estimate the model for the uni-

variate time series and then use the corresponding residuals to compute the

copula structure (see, e.g., Joe (2005) for a more detailed discussion). The

copula structure itself is estimated according to the algorithm presented in

Schnieders (2010). It estimates the structure of the PCC, i.e., the 40(40−1)/2

best fitting bivariate copulas for any combinations of pairs of places, as well

as their parameters. The resulting PCC with 780 bivariate copulas is partly

pictured in a vine plot in figure 8 (see figure 12 in the Appendix for an intro-

duction to vine plots). The entire PCC contains 343 Frank, 279 Gaussian,

100 Clayton survival and 58 Clayton copulas. The high proportion of non-

Gaussian copulas reflects the non-normality of the wind data. The estimated

vine structure and parameters of the time series models are available from

the authors upon request. Using a Goodness-of-Fit test based on the Rosen-

blatt transformation (see Aas et al., 2009), we obtain a P-value of 0.8184 by

bootstrapping (see Genest et al., 2009). Opposed to that, the P-value for a

multivariate Gaussian copula is only 0.2016, clearly indicating the good fit

of the vine approach. After the calibration of the model to our data set,

we use the estimated parameters to simulate 1000 years of wind data. The

optimizations in the next section rely on these simulated data sets.
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Figure 8: Excerpt of the estimated vine structure, containing the
stations in Bremen (5), Augsburg (2), Hamburg (16) and Kempten
(22). The names above the edges denote the copula family with the
best fit to the respective pair of variables.

3. Optimal wind power allocation

In this section, we find optimal allocations of wind power production over

Germany. Since our model is conceptually suited only for the daily frequen-

cies (due to inter-temporal cross-dependence of residuals on higher frequen-

cies), we conduct the optimization on simulated daily data, only. However,

the derived solutions lead to large improvements on the hourly level as well.

We show this by evaluating the derived optima also with the historical hourly

data. Note that the amount of historical data is too small to use the histor-

ical data directly in an optimization and we depend on the use of simulated

data.

To find optimal allocation plans of wind energy production, in subsection

3.1, the simulated 1000 years of wind speed data are transformed to wind

power output. In subsection 3.2, the current allocation of wind power produc-

tion is mapped onto the considered regions. In subsection 3.3 we explain the

optimization setup in detail and subsection 3.4 contains the results. Optimal

allocation plans are derived and compared to the distribution of the wind
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energy production of 2009. Two scenarios are considered: an overall best

allocation and an expansion of the German wind energy production by 40%

as is reasonable for the next five to ten years, including offshore exploitation.

3.1. Simulation of wind power data

The model presented in section 2 is used to simulate 1000 years of daily

wind data. The data is then transformed to the corresponding power output

in two steps. In the first step, it is scaled to the hub height of modern

wind turbines, and in the second step, the wind to power relationship of a

benchmark wind turbine is used to transform wind speeds to power output.

To scale it to the wind speed at the typical hub height of modern wind

turbines (80 m), we follow the approach used in Katzenstein et al. (2010)

based on Seinfeld and Pandis (2006). With growing altitude it assumes a

vertical logarithmic profile of the wind velocity v leading to

vh1
= vh0

·

(

log(h1)− log(z0)

log(h0)− log(z0)

)

, (2)

where h0 and h1 are the height of the measurements (see table 2 for the re-

spective values of h0) and the height of interest, respectively. The parameter

z0 corresponds to surface roughness length. According to Katzenstein et al.

(2010) we use z0 = 0.03 and h1 = 80m. Having rescaled the wind speed data,

we use a GE 1.5 MW turbine as a benchmark to convert the wind speed data

into power output. We follow the approach of Archer and Jacobson (2007),

and use a combination of third-order polynomials to determine the power
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output as a function of the wind speed vh1
:

P (vh1
) =


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) 3m/s ≤ vh1

≤ 8m/s

Pupper(vh1
) 8m/s ≤ vh1

≤ 12m/s

1500 12m/s ≤ vh1
≤ 25m/s

0 25m/s ≤ vh1

, (3)

where Plower(vh1
) = v3h1

+ 8v2h1
− 53vh1

+ 60 and Pupper(vh1
) = −11.25v3h1

+

307.5v2h1
− 2520vh1

+ 6900. Figure 9 shows a plot of this function.
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Figure 9: The power output as a function of the wind speed for a
GE 1.5 MW turbine. The cut-in and cut-off wind speeds are 3m/s
and 25m/s, respectively. The rated wind speed is 12m/s.

3.2. Allocation of current wind power production

To compare optimal allocations of wind power to the current status, we

first need to map the current wind energy production onto the regions of
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our data sets. Note that there was (an still is) no offshore wind power in

2009. Therefore, the offshore stations are not considered. The 36 onshore

stations are the same for the daily and the hourly data set, resulting in the

same weights for both frequencies. The proportion of each German wind tur-

bine in the overall wind energy production is added to the onshore regions

weighted by its absolute distance to the respective region. A data set con-

taining all German wind parks, their positions and their production in 2009

was provided by the transmission system operators (50Hz, Amprion, EnBw,

Transpower). The result is a weight vector ω2009 ∈ R
40, with

∑

ω(i) = 1,

where the i-th entry corresponds to the proportion of wind energy produced

in region i. The vector is shown in the second column of table 3 (Appendix).

The region around Zugspitze shows with 1.1% the smallest proportion in

the wind production. This low weight may be explained geographically since

the region Zugspitze is a mountain range and the possibility for the installa-

tion of wind turbines is limited. The next smallest proportions between 1.2%

and 1.4% are of the regions around Hohenpeissenberg, Konstanz, Kempten,

Lindenberg and Augsburg which are in the south of Germany. Their low

weights seem not to be caused geographically but by the political environ-

ment in these parts of Germany. The regions with the highest productions

(between 4.0% and 4.7%) are Emden, Magdeburg, Cuxhaven, Bremen and

Schleswig. In accordance to figure 1, these are located at the coasts and in

eastern Germany.
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3.3. Optimization setup

We now derive weight vectors ω ∈ R
40, where ω(i) is again the proportion

of wind energy produced in region i, but where the overall power output is

optimized on daily basis. We carry out the optimizations on the complete

set of stations, i.e., on- and offshore, as well as on onshore data only. For

each of the cases, we derive two different optimal allocations, an overall opti-

mal allocation (total optimization) and the optimal allocation when starting

at 2009 allocation and adding 40% of wind energy production (repowering

optimization). We limit all weights to a maximum of 0.08, i.e., 8% of the

overall produced wind energy. We think that this choice of an upper bound

is reasonable for most of the regions and corresponds to about the triple of

the weight of an uniform distribution of wind power over the country. Con-

sidering 4 offshore stations the bounds correspond to a maximum of 32% of

offshore wind energy. In the pure onshore scenarios, the offshore weights are

restricted to 0%. Additionally we limit the weights of the region Zugspitze to

1.5%, Fichtelberg to 3% and Kahler Asten to 5% due to their geographical

characteristics.

For the first optimization we find weight vectors ω⋆ ∈ R
40 such that

ω⋆ = argmax
ω

Quantileα
(

ω⊤X
)

, (4)

25



under the constraint

40
∑

i=1

ω(i) = 1,

where Quantileα
(

ω⊤X
)

denotes the empirical α-quantile qα of ω⊤X and

X contains all 40 simulated time series normalized to mean 1. Note that

ω and ω⋆ denote column vectors and ω⊤ denotes the transposed vector of

ω. Thus, the i-th entry of ω⋆ is (on average) the optimal proportion of the

produced wind energy in region i in the overall produced wind energy. The

solution is optimal in the sense that the overall produced power output has

the highest α-quantile qα among all possible allocations ω. This means that

in (1− α) · 100% of the cases the overall produced power lies above qα. The

quantile qα is equivalent to the α · 100%-value at risk.

For the second optimization, we assume that the overall produced wind

energy is expanded by 40%. Thus, the optimization problem is:

ω⋆ = argmax
ω

Quantileα
(

(ω + ω2009)⊤X
)

, (5)

under the constraint

40
∑

i=1

ω(i) = 0.4.

Both optimizations, the total scenario and the repowering scenario, are

done for the mean of the quantiles q0.01, q0.02, . . . , q0.12. The optimization
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of the mean of the quantiles is done to account for possible sensitivity of

the weights to the quantiles, i.e., to find weights that are valid for a wide

range of quantiles. For the optimization Matlab’s constraint optimization

function with active-set algorithm is used, which is based on a quasi-Newton

approximation to the Hessian of the Lagrangian.

3.4. Results of optimization

The resulting allocations of the optimizations are shown in table 3. The

case with on- and offshore installation is additionally depicted in figure 10.

Inspection of the allocations of the total optimization reveals that, in an

optimal pure onshore scenario, much more wind energy would be produced

in the southern and western part of Germany (area around Saarbruecken-

Ensheim, Frankfurt and Duesseldorf) than it is actually done as well as at

the coasts of the North Sea (area around Emden and Cuxhaven) and the

Baltic Sea (Rostock-Warnemuende, Westermarkelsdorf and Greifswald). On

the contrary, regions that produce a high proportion of today’s wind energy

(e.g., Magdeburg, Neuruppin and Schwerin in the eastern part of Germany)

should not contribute to the wind energy production at all or at least strongly

decrease their proportion. In the scenario where offshore installation is possi-

ble, all 4 offshore regions receive the maximum possible weights. The onshore

production would then be concentrated on the southern, western and north-

ern parts of the country and less concentrated in the central and central

eastern regions (see also figure 10).
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The results for the repowering scenario, i.e., starting at the status quo

and adding 40% of production, are of similar structure. Expanding and re-

powering should in particular be forced in the offshore regions (compare to

figure 10). If we restrict to the onshore regions, repowering and installa-

tion of new wind turbines should be focused on the coasts of the North Sea

and the Baltic Sea as well as mountainous regions in the south of Germany

(Fichtelberg, Hohenpeissenberg).

The weights are derived by maximizing the daily model. We evaluate

them on hourly and daily frequency by transferring the historical wind data to

power data as discussed in section 3.1 and assuming an allocation according

to the derived weights. The hourly data set does not include data from the

offshore station UFS Deutsche Bucht. We therefore add the weights of this

station equally to the nearest offshore stations Hallig Hooge and Helgoland

(see table 3 for the resulting weights). We calculate the mean of the quantiles

q0.01, q0.02, . . . , q0.12 of the resulting production as well as the 5% quantile

and the 12% quantile. The 12% quantile is motivated by the (scheduled and

unscheduled) averaged downtime of US coal plants of 12.5%, as discussed in

Archer and Jacobson (2007).

The results are shown in table 1 together with the respective quantiles,

i.e., value at risk numbers (VaR), of the 2009 allocation. In all cases, the

quantiles of the optimized scenarios are higher than those of the 2009 allo-

cation. In particular, for the total optimization with restriction to onshore

regions, the 5% value at risk is increased by over 60% (from 6.1% to 10.1%)
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for the daily data and by over 40% for the hourly data (8.0% to 11.5%). This

can further be improved by allowing for offshore stations (6.1% to 19.3% daily

and 8.0% to 20.3% hourly). For example, the last numbers mean that the

proportion of the average power production that is online in at least 5% of the

time would be 20.3% instead of 8.0%. In this case, 32% of the energy would

be produced offshore and the onshore production would be optimally allo-

cated. However, it becomes clear from the table that the larger effect comes

from the inclusion of offshore regions than the optimal allocation onshore.

In the repowering scenario, i.e., when starting at the current allocation

of wind power production and adding 40% of average production optimally,

the improvement in stability is still impressive on hourly as well as on daily

frequencies. For example, the 5% VaR of the production raises from 6.1%

of the average production to 14.1% (daily) and 15.8% (hourly). In the to-

tal scenario this 5% VaR is 19.3%. In both the total and the repowering

scenario, around 30% of the wind power is produced offshore, while in the

total scenario, the onshore production is additionally optimized, which leads

to the further improvement in VaR. Thus it seems, that first of all the off-

shore production raises stability (i.e., the quantiles) but that the additional

optimal installation onshore evens out remaining fluctuations.

4. Conclusion

In this paper, the possibility of smoothing the German wind power output

by optimally allocating wind energy capacity across the country is investi-
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VaR Mean VaR 0.05 VaR 0.12
d
a
il
y

Status Quo 7.2 6.1 11.8

onshore
Total 11.9 10.1 18.5

Repower 10.0 8.2 15.4

on-/offshore
Total 21.7 19.3 31.4

Repower 16.0 14.1 23.4

h
o
u
r
ly

Status Quo 9.1 8.0 13.8

onshore
Total 13.3 11.5 20.2

Repower 11.8 10.3 17.8

on-/offshore
Total 22.6 20.3 32.7

Repower 17.7 15.8 25.9

Table 1: Evaluation of the derived allocation vectors using daily and hourly wind data from
2005-01-01 to 2010-12-31. Shown are value at risk numbers of the wind power production
in percent of the average wind power in the considered scenarios. They are compared to
the respective numbers assuming the allocation of wind power production of 2009 (Status
Quo). The actual used weight vectors are shown in table 3. On both frequencies, the
optimal weights lead to a clear improvement of the value at risk.

gated. The aim is to find allocations of wind power production maximizing

the lower quantiles, i.e., the value at risk of the overall wind power output

over time. The optimization is model based. Since the distributions of wind

speeds are highly non-Gaussian, nonlinear time series with copula models are

used to assess and maximize the quantiles. The models are suited for mod-

eling the wind on daily frequencies. The resulting optimal allocations are

then evaluated using historical wind data of daily and hourly frequency. The

results show that the current allocation of wind power production in Ger-

many is far from optimal. There is not sufficient capacity installed offshore,

at the coasts and in the mountainous regions, whereas too much capacity is

located at the eastern part of Germany. The installation of offshore wind
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Figure 10: Graphical illustration of the overall optimal allocation (left) and the
repowering scenario (right). The status quo is represented by the green circle with
sizes according to the weight of the corresponding region. In the left figure, the
blue circles denote the proportion of wind energy produced in the given regions
according to the optimal allocation, while the blue circles in the right figure
denote the areas where the repowering should be focused on. See table 3 for the
numerical results.

parks should in particular be forced.

Settling these gaps would strongly reduce the shortfall risk and increase

the proportion of wind energy production which is online at a certain prob-

ability by more than 150%. Our analysis shows that increasing the mean

wind power by 40%, e.g., by installing new capacity or repowering existing

turbines, may increase these certain proportions by more than 100%. For

this, the expansion of wind power capacity should be forced in the offshore

regions and at the coasts as well as in the southern parts of Germany.
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Number and Region mean med std skew kurt

1 Aachen [202, 16.0] 3.1 / 3.3 2.7 / 2.8 1.7 / 2.0 1.2 / 1.2 4.3 / 4.7
2 Augsburg [462, 10.0] 2.9 / 2.9 2.5 / 2.4 1.5 / 2.0 1.6 / 1.4 6.5 / 5.7
3 Bamberg [239, 10.0] 2.2 / 2.2 2.1 / 2.0 0.9 / 1.4 1.0 / 1.0 4.3 / 3.9
4 Berlin-Tempelhof [48, 10.0] 3.8 / 3.7 3.5 / 3.5 1.5 / 1.8 1.0 / 0.8 4.2 / 4.1
5 Bremen [4, 10.0] 4.1 / 4.1 3.8 / 3.8 1.7 / 2.1 0.9 / 0.8 4.2 / 3.7
6 Cuxhaven [5, 26.1] 5.3 / 5.3 5.0 / 4.9 2.0 / 2.5 0.9 / 0.7 3.8 / 3.5
7 Dresden-Klotzsche [227, 10.0] 4.1 / 4.0 3.8 / 3.6 1.7 / 2.0 1.0 / 1.0 4.0 / 4.0
8 Duesseldorf [37, 10.2] 3.9 / 3.8 3.7 / 3.5 1.7 / 2.1 0.8 / 0.8 3.7 / 3.8
9 Emden [0, 9.7] 4.4 / 4.3 4.1 / 4.1 1.8 / 2.2 0.8 / 0.7 3.9 / 3.6

10 Erfurt-Weimar [316, 10.0] 4.2 / 4.1 3.7 / 3.5 2.0 / 2.3 1.1 / 1.2 4.2 / 4.8
11 Fichtelberg [1213, 23.8] 9.4 / 9.0 8.6 / 8.3 4.2 / 4.5 0.7 / 0.6 3.1 / 2.9
12 Frankfurt/Main [112, 10.0] 3.3 / 3.2 3.0 / 2.8 1.5 / 2.0 1.2 / 1.3 4.9 / 5.3
13 Goerlitz [238, 13.0] 3.9 / 3.8 3.4 / 3.3 1.9 / 2.2 1.0 / 1.0 3.6 / 3.9
14 Greifswalder Oie [12, 3.0] 6.9 / 6.7 6.3 / 6.2 2.9 / 3.3 0.8 / 0.7 3.3 / 3.4
15 Hallig Hooge [4, 10.0] 7.6 / 7.5 7.3 / 7.2 2.9 / 3.4 0.6 / 0.5 3.0 / 3.2
16 Hamburg-Fuhlsbuettel [11, 10.0] 3.9 / 3.9 3.7 / 3.7 1.6 / 2.0 0.7 / 0.6 3.4 / 3.2
17 Hannover [55, 10.0] 3.8 / 3.7 3.5 / 3.4 1.5 / 1.9 0.9 / 0.8 3.8 / 3.8
18 Helgoland [4, 10.0] 8.5 / 8.3 8.0 / 7.9 3.3 / 3.8 0.5 / 0.5 2.8 / 2.9
19 Hof [565.1, 16.0] 3.1 / 3.1 2.9 / 2.9 1.3 / 1.6 1.1 / 0.9 4.6 / 4.0
20 Hohenpeissenberg [977, 40.5] 5.3 / 4.7 4.4 / 3.8 3.0 / 3.2 1.6 / 1.8 6.1 / 7.2
21 Kahler Asten [839, 27.3] 6.1 / 6.1 5.8 / 5.8 2.1 / 2.5 0.8 / 0.7 3.4 / 3.6
22 Kempten [705, 5.0] 2.1 / 2.1 1.9 / 1.9 0.8 / 1.1 1.7 / 1.2 7.7 / 6.0
23 Konstanz [443, 17.0] 2.2 / 2.2 1.8 / 1.7 1.0 / 1.4 1.9 / 1.8 7.8 / 7.7
24 Leipzig-Halle [131, 10.0] 4.3 / 4.2 3.9 / 3.7 1.8 / 2.2 1.0 / 1.2 3.9 / 4.8
25 Lindenberg [98, 10.4] 3.5 / 3.5 3.2 / 3.1 1.5 / 1.7 1.3 / 1.4 5.2 / 5.7
26 Magdeburg [76, 18.0] 2.5 / 2.5 2.2 / 2.3 1.2 / 1.4 1.2 / 1.1 4.7 / 4.9
27 Meiningen [450, 18.0] 3.2 / 3.1 3.0 / 2.9 1.4 / 1.9 0.8 / 0.8 3.9 / 3.7
28 Neuruppin [38, 18.0] 2.9 / 2.9 2.7 / 2.7 1.3 / 1.7 0.8 / 0.8 3.6 / 3.8
29 Nuernberg [314, 10.0] 3.0 / 2.9 2.8 / 2.6 1.3 / 1.7 1.3 / 1.2 5.5 / 5.0
30 Potsdam [81, 37.7] 4.2 / 4.2 4.0 / 4.0 1.6 / 1.8 0.9 / 0.8 3.9 / 4.3
31 Rostock-Warnemuende [4, 22.0] 4.9 / 4.8 4.2 / 4.1 2.4 / 2.8 1.4 / 1.4 5.1 / 5.7
32 Saarbruecken-Ensheim [320, 10.0] 3.5 / 3.5 3.2 / 3.2 1.6 / 2.1 1.1 / 1.0 4.6 / 4.6
33 Schleswig [43, 16.6] 4.0 / 3.9 3.7 / 3.6 1.5 / 1.9 1.0 / 0.8 4.3 / 3.6
34 Schwerin [59, 22.0] 3.8 / 3.8 3.5 / 3.5 1.7 / 1.9 1.1 / 0.9 4.5 / 4.0
35 Straubing [371, 10.0] 2.6 / 2.5 2.3 / 2.2 1.2 / 1.6 1.5 / 1.3 6.3 / 5.4
36 Stuttgart-Echterdingen [371, 10.0] 2.6 / 2.5 2.2 / 2.0 1.3 / 1.8 1.3 / 1.3 5.5 / 5.3
37 UFS Deutsche Bucht [0, 10.0] 8.0 / – 7.7 / – 3.2 / – 0.5 / – 2.9 / –
38 Westermarkelsdorf [3, 10.0] 6.1 / 6.0 5.7 / 5.6 2.7 / 3.1 0.9 / 0.7 3.6 / 3.4
39 Wuerzburg [268, 10.0] 3.1 / 3.1 2.7 / 2.6 1.6 / 2.0 1.4 / 1.4 6.3 / 5.5
40 Zugspitze [2964, 16.0] 7.2 / 7.3 6.6 / 6.6 3.2 / 4.0 1.0 / 1.1 4.1 / 4.8

Table 2: Descriptive statistics of the wind speeds of all 40 considered weather stations for
the time 2005-01-01 to 2010-12-31. The first number in each column refers to daily data,
the second to hourly data. Brackets behind the names contain the respective absolute
altitudes of the stations and wind detector heights in m. As to be expected, the mean
values of the stations deviate clearly with values below 2m/s (Kempten) and over 8m/s
(Fichtelberg, Helgoland). Kempten is located in a shielded valley in southern Germany,
while Fichtelberg lies exposed in the forelands of Bavaria and Helgoland lies exposed in
the north sea. All wind distributions are skewed to the right and show excess kurtosis,
i.e., are heavier tailed than the Gaussian distribution. Both data sets are independently
provided by the German wheather service.

36



On- and Offshore Only Onshore
Number and Region 2009 Total Repower Total Repower

1 Aachen 2.2 0.7 / 0.7 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
2 Augsburg 1.4 2.8 / 2.8 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
3 Bamberg 2.1 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
4 Berlin-Tempelhof 3.7 4.1 / 4.1 0.0 / 0.0 2.4 / 2.4 0.0 / 0.0
5 Bremen 4.5 0.0 / 0.0 0.0 / 0.0 3.5 / 3.5 0.0 / 0.0
6 Cuxhaven 4.6 3.9 / 3.9 0.0 / 0.0 8.0 / 8.0 1.3 / 1.3
7 Dresden-Klotzsche 2.8 5.1 / 5.1 0.0 / 0.0 7.6 / 7.6 0.0 / 0.0
8 Duesseldorf 2.5 6.7 / 6.7 0.0 / 0.0 7.7 / 7.7 2.5 / 2.5
9 Emden 4.7 0.3 / 0.3 0.0 / 0.0 8.0 / 8.0 3.5 / 3.5

10 Erfurt-Weimar 3.3 0.0 / 0.0 0.0 / 0.0 0.9 / 0.9 0.0 / 0.0
11 Fichtelberg 2.1 3.0 / 3.0 2.1 / 2.1 3.0 / 3.0 2.1 / 2.1
12 Frankfurt/Main 2.2 5.8 / 5.8 0.0 / 0.0 7.4 / 7.4 0.0 / 0.0
13 Goerlitz 2.3 0.1 / 0.1 0.0 / 0.0 1.1 / 1.1 0.0 / 0.0
14 Greifswalder Oie 0.0 8.0 / 8.0 11.2 / 11.2 – / – – / –
15 Hallig Hooge 0.0 8.0 / 12.0 8.2 / 12.2 – / – – / –
16 Hamburg-Fuhlsbuettel 3.9 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
17 Hannover 4.1 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
18 Helgoland 0.0 8.0 / 12.0 9.9 / 14.0 – / – – / –
19 Hof 2.4 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
20 Hohenpeissenberg 1.2 8.0 / 8.0 0.1 / 0.1 8.0 / 8.0 10.0 / 10.0
21 Kahler Asten 3.1 5.0 / 5.0 0.0 / 0.0 5.0 / 5.0 3.9 / 3.9
22 Kempten 1.3 0.0 / 0.0 0.0 / 0.0 0.4 / 0.4 0.3 / 0.3
23 Konstanz 1.2 0.2 / 0.2 0.0 / 0.0 0.2 / 0.2 0.0 / 0.0
24 Leipzig-Halle 3.8 1.5 / 1.5 0.0 / 0.0 2.0 / 2.0 0.5 / 0.5
25 Lindenberg 1.3 0.1 / 0.1 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
26 Magdeburg 4.7 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
27 Meiningen 2.6 0.1 / 0.1 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
28 Neuruppin 4.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
29 Nuernberg 1.9 1.1 / 1.1 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
30 Potsdam 3.8 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
31 Rostock-Warnemuende 3.4 1.7 / 1.7 0.0 / 0.0 8.0 / 8.0 0.9 / 0.9
32 Saarbruecken-Ensheim 1.7 7.9 / 7.9 0.0 / 0.0 8.0 / 8.0 5.7 / 5.7
33 Schleswig 4.0 0.2 / 0.2 0.0 / 0.0 7.2 / 7.2 0.4 / 0.4
34 Schwerin 3.6 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
35 Straubing 1.5 0.1 / 0.1 0.0 / 0.0 1.5 / 1.5 0.5 / 0.5
36 Stuttgart-Echterdingen 1.6 0.0 / 0.0 0.1 / 0.1 0.6 / 0.6 0.0 / 0.0
37 UFS Deutsche Bucht 0.0 8.0 / – 8.1 / – – / – – / –
38 Westermarkelsdorf 3.1 8.0 / 8.0 0.0 / 0.0 8.0 / 8.0 8.1 / 8.1
39 Wuerzburg 2.2 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0 0.0 / 0.0
40 Zugspitze 1.1 1.5 / 1.5 0.3 / 0.3 1.5 / 1.5 0.3 / 0.3

Table 3: Percentages of the wind energy production for the status quo and the optimization
scenarios. Note that in the repower scenario the vector of 2009 data and the repower vector
sum up to 140% of production, while in the total optimization the total vector sums up
to 100%. Daily and hourly weights differ in the offshore stations 38, 18 and 15.
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B. Copulas

In this section we briefly discuss multivariate copula constructions. A

more detailed introduction to copula modeling is given in Joe (1997), Cheru-

bini et al. (2004) and Nelsen (2006).

B.1. Copula functions

Let X1, . . . , Xd be continuous random variables with joint distribution

FX1,...,Xd
and marginal distributions FXi

(xi) for i = 1 . . . d. Then there exists

a uniquely defined distribution function C : [0, 1]d −→ [0, 1] with uniform

margins such that

FX1,...,Xd
(x1, . . . , xd) = C (FX1

(x1), . . . , FXd
(xd)) (x1, . . . , xd) ∈ R

d.

C is called copula ofX1, . . . , Xd and captures the complete dependence struc-

ture of X1, . . . , Xd.

Copula functions may be defined in a parametric way. An important

example for a parametric family of copulas is the Gaussian copula (see Joe

(1997)). The Gaussian copula is the copula of multivariate Gaussian dis-

tributed random variables and it is completely determined by the pairwise

rank correlations of the variables. It is defined by

CΣ(u1, . . . , ud) = ΦΣ

(

Φ−1(u1), . . . ,Φ
−1(ud)

)

,

where ΦΣ is the distribution function of the multivariate normal distribu-
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tion with covariance matrix Σ = (ρij)i,j=1...d, which is a positive definite

correlation matrix and Φ−1 denotes the quantile function of a standard nor-

mal distribution. Another example for a parametric family of copulas is the

Clayton family (see Clayton (1978)), given by
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Figure 11: Contour plots of Clayton, Gaussian, Clayton survival
and Frank copulas with linear correlation ρ = 0.5. The dependence
given by the Gaussian copula is symmetric while the Clayton and
Clayton survival copula show asymmetric dependence structure. In
the case of the Clayton copula, U and V are more dependent for
smaller values, and in the case of the Clayton survival for larger
values. The Frank copula shows less dependence for more extreme
values of U and V than for values in the middle range, whereas
the Gaussian copula shows the same strength of dependence for all
ranges.
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Cθ(u1, . . . , ud) :=

(

d
∑

i=1

u−θ
i − (d− 1)

)−1/θ

,

where θ > 0. Given the bivariate Clayton copula, we may also define its

survival copula, the Clayton survival copula:

Cθ(u1, u2) := u1 + u2 − 1 +
(

(1− u1)
−θ + (1− u2)

−θ − 1
)−1/θ

.

The fourth example of copulas considered in this paper is the Frank copula,

given by

CΨ(x1, x2, . . . , xd) = Ψ−1

(

n
∑

i=1

Ψ(Fi(xi))

)

,

where Ψ is a generator function with

Ψ(x) = − ln

(

e−αx − 1

e−α − 1

)

.

Figure 11 shows contour plots of the densities of uniformly [0, 1]-distributed

random variables U and V with Clayton copula, Gaussian copula and Clayton

survival copula, respectively. The dependence given by the Gaussian copula

is symmetric while the Clayton and survival Clayton copula show asymmetric

dependence structure. In the case of the Clayton copula, U and V are more

dependent for smaller values, in the case of the survival Clayton for larger

values.

In section 2, the latter two copulas were found to capture the dependence

of the wind speeds of the pairs Helgoland and Rostock-Warnemuende (Clay-

40



ton) and Bremen and Saarbruecken-Ensheim (Survival Clayton) Thus, for

Helgoland and Rostock-Warnemuende the dependence gets stronger for low

wind speeds whereas for Bremen and Saarbruecken-Ensheim it gets higher

for higher wind speeds. The Frank copula shows less dependence for extreme

values of U and V than for values around 0.5.

The construction of proper copula functions for the case d > 2 is not

trivial and topic of recent research (see, e.g., Fischer et al. (2009)) among

many others. The introduced copulas above and many multivariate families

of copulas suffer from the drawback that the pair-wise dependence structure

of their one-dimensional margins are of the same type. However, for wind

speeds and in many other cases the pairwise dependence structure varies

between the dimensions. More flexible concepts of copulas are pair copula

constructions which are constructed from bivariate copulas.

B.2. Pair-copula constructions

Pair copulas, originally introduced by Joe (1996), provide a flexible way

to extend bivariate copula theory to the multivariate case (see Bedford and

Cooke (2001, 2002) and Berg and Aas (2009) for a more detailed introduc-

tion). The main idea of pair-copulas is to decompose multivariate copulas

into a cascade of bivariate copulas. Let F be a joint distribution function with

marginals F1, F2, . . . , Fd and denote the corresponding densities by f and

f1, f2, . . . , fd, respectively. Then the multivariate density f(x1, x2, . . . , xd)
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may be uniquely (up to relabeling) decomposed by iteratively conditioning:

f(x1, x2, . . . , xd) = f(xd | x1, x2, . . . , xd−1) · f(x1, . . . , xd−1)

= . . . = f(x1) ·

d
∏

i=2

f(xi | x1 . . . xd−1). (6)

To obtain a pair-copula construction for f(x1, x2, . . . , xd), (6) can be ex-

pressed in terms of the marginal densities and a product of d(d−1)/2 bivari-

ate pair-copulas C.

These pair-copulas C are arbitrary bivariate copulas. The decomposition

is not unique anymore. Depending on the variables we condition on in the

PCC, we obtain different decompositions of the same multivariate density.

Since the number of different decompositions increases sharply with dimen-

sion d, Bedford and Cooke (2001, 2002) introduced a graphical model, called

regular vines, to describe these structures. A d-dimensional vine is repre-

sented by d − 1 trees Tj , j = 1, . . . , d − 1, which have d + 1 − j nodes and

d − j edges. Each edge of a tree corresponds to a pair-copula density. The

edges of tree Tj become the nodes in tree j + 1. Two nodes in tree Tj+1

are joined by an edge if the corresponding edges in tree Tj share a node.

The whole decomposition is defined by the marginal distributions and the

d(d − 1)/2 bivariate pair-copulas, that do not necessarily need to belong to

the same class of copulas.

There are different approaches of building such vines. In this study we

concentrate on the D-vine approach. A D-vine is a regular vine for which no
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node in any tree is connected to more than two edges. See figure 12 for an

illustration of a 4-dimensional D-Vine structure. For D-vines one gets the

following expression for the conditional densities in (6)

f(xi | x1, . . . xi−1) =

i−2
∏

j=1

cj,i|j+1,...,i−1(F (xj | xj+1, ..

.., xi−1), F (xi | xj+1, . . . , xi−1))

·ci−1,i(F (xi−1), F (xi)) · fi(xi), (7)

where cj,i|j+1,...,i−1 is the density (derivative) of the copula of the conditional

distribution of xj and xi given xj+1, . . . , xi−1. Replacing the conditional den-

sities in (6) with (7) finally leads to the density of a D-vine PCC:

f(x1, . . . , xd) =
d−1
∏

i=1

d−i
∏

j=1

cj,i+j|j+1,...,i+j−1(F (xj | xj+1, ..

.., xi+j−1), F (xi+j | xj+1, . . . , xi+j−1))

·
d
∏

i=1

fi(xi). (8)

It is easy to check that formula (8) consists only of 1-dimensional condi-

tional marginal distribution functions and 2-dimensional conditional copula

densities. Thus, formula (8) decomposes the joint density of X1, . . . , Xd in

a product of bivariate copula functions. These copulas may be of arbitrary

and mixed type. For this reason the decomposition (8) enables for a very

flexible modeling of dependence structures based on 2-dimensional copulas.
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Figure 12: D-Vine structure for a 4-dimensional random vector. The bottom row, tree
T1, indicates the 4 dimensions of the vector denoted by the nodes 1 to 4. The nodes are
connected by edges 12, 23 and 34 denoting pairwise copulas describing the (unconditional)
dependence of the respective dimensions. In the next row, tree T2, the edges 13|2 and 24|3
denote the copula of the conditional distribution of 1 and 3 given 2 respectively 2 and 4
given 3. In tree T3 the edge 14|23 denotes the copula of the conditional distribution of
1 and 4 given 2 and 3. Altogether, the dependence of the 4 dimensions is captured by
4 · 3/2 = 6 2-dimensional copulas.
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