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Abstract

Electricity generation from renewable energy sources (RES-E) is supposed to increase significantly within

the coming decades. However, uncertainty about the progress of necessary infrastructure investments, public

acceptance and cost developments of renewable energies renders the achievement of political plans uncertain.

Implementation risks of renewable energy targets are challenging for investment planning, because different

RES-E shares fundamentally change the optimal mix of dispatchable power plants. Specifically, uncertain

future RES-E deployment paths induce uncertainty about the steepness of the residual load duration curve

and the hourly residual load structure. In this paper, we show how uncertain future RES-E penetrations

impact the electricity system and try to quantify effects for the Central European power market. We use

a multi-stage stochastic investment and dispatch model to analyze effects on investment choices, electricity

generation and system costs. Our main findings include that the uncertain achievement of RES-E targets

significantly effects optimal investment decisions. First, a higher share of technologies with a medium

capital/operating cost ratio is cost-efficient. Second, the value of storage units in systems with high RES-E

penetrations might decrease. Third, in the case of the Central European power market, costs induced by

the implementation risk of renewable energies seem to be rather small compared to total system costs.
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1. Introduction

In order to reduce CO2 emissions and the dependency from imported fuels, many countries established

ambitious targets to increase electricity generation from renewable energy sources (RES-E). European Mem-

ber States agreed to increase the European RES-E share from 15.6% in 2007 to 34% in 2020. Although

long-term targets (after 2020) have not been defined on a European level, individual Member States, such

as Germany, target to increase their RES-E shares continously up to 80% in 2050.

However, the implementation of political plans can be uncertain even if reliable targets exist, for four

principal reasons. First, many RES-E technologies are relatively new technologies implying that techno-

logical and cost developments are uncertain and/or that limited experiences exist for construction and

maintenance. Second, favorable RES-E sites are often located far from demand centers and therefore the

electricity network has to be adapted. Third, local opposition may hinder the construction of new sites

or transmission lines due to visual or environmental concerns. Fourth, when RES-E is supported by a

price-based promotion system, such as by a feed-in-tariff system, resulting RES-E quantities are inherently

uncertain.

Uncertainty about the achievement of RES-E targets is challenging for investment planning, because

different RES-E shares fundamentally change the optimal mix of dispatchable power plants. Specifically,

uncertain future RES-E deployment paths induce uncertainty about the steepness of the residual load

duration curve and the structure of the hourly residual load. Thus, the optimal mix of (dispatchable) peak-,

mid- and baseload plants is uncertain. In addition, it is uncertain how flexible the power plant fleet should

optimally be and how valuable storage units are for the system. Consequently, the optimal investment

planning for power plants with long construction, amortization and lifetimes is difficult.

In this paper, we show in a first part how uncertain future RES-E penetrations impact the electricity

system and in a second part try to quantify this impact from a social wefare perspective for the electricity

systems of Germany and its neighboring countries. For the second part, we assume that a continuous

increase of the RES-E share until 2050 is a reliable target which is however submitted to risks about the

progress of necessary infrastructure investments, public acceptance and cost developments of RES-E. We use

a multi-stage stochastic investment and dispatch model to quantify effects on investment choices, electricity

generation and system costs.

Our main findings include that the uncertain achievement of RES-E targets significantly effects optimal

investment decisions. First, a higher share of technologies with a medium capital/operating cost ratio is

cost-efficient. Second, the value of storage units in systems with high RES-E penetrations might decrease.
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Third, in the case of the Central European power market, costs induced by the implementation risk of

renewable energies seem to be rather small compared to total system costs.

The remainder of the article is structured as follows: The next section provides an overview of related

literature and the contribution of the current work. Section 3 describes the modeling approach and gives

an overview of assumed input parameters. In Section 4 we discuss theoretically the impact of uncertain

future RES-E penetrations and highlight the most important effects in an illustrative modeling example.

In Section 5 we quantify the impact of uncertain RES-E target achievement for the electricity systems of

Germany and its neighboring countries. In Section 6 we draw conclusions and provide an outlook for further

research.

2. Related literature and contributions of the current work

The analysis of uncertainties with help of stochastic optimization models can be traced back to the

1950´s (Dantzig (1955)). Applications to electricity investment planning models often focus on the effects of

demand, fuel or CO2 emission prices. In recent years also the influence of intermittent renewable infeed on

investment decisions for conventional power plants has been analyzed with stochastic optimization models.

The influence of demand uncertainty on investment decisions has been first shown in the 1980´s for

example by Murphy et al. (1982) and Mondiano (1987). Gardner (1996) and Gardner and Rogers (1999)

analyze the effect of demand uncertainty in dynamic contexts, using multistage optimization models.1 Gard-

ner (1996) shows that the value of technologies with short lead times, short lifetimes and/or a low capi-

tal/operating cost ratio increases in an uncertain environment. Gardner and Rogers (1999) analyze in more

detail the effect of short lead times when dealing with demand uncertainty.

Uncertainty about fuel costs have been adressed e.g. by Hobbs and Maheshwari (1990), showing that

expected costs of neglecting uncertainty of fuel prices in investment planning is lower than those of disregard-

ing demand uncertainties. Reinelt and Keith (2007) use a stochastic dynamic model to analyze generation

technology choices and optimal timing in investment when future CO2 and natural gas prices are uncer-

tain. Roques et al. (2006) evaluate investment decisions into nuclear and CCGT plants under uncertainty

about natural gas, CO2 emission and electricity prices by applying a multi-stage stochastic programm. Ef-

fects of uncertain future CO2 regulations are also adressed by Patino-Echeverri et al. (2009) who apply a

stochastic dynamic model and analyze the effect of uncertainty on investment strategies, social costs and

CO2 emissions.

1For different applications, dynamic stochastic electricity optimization models have been developed before, e.g. by Manne
and Richels (1978).
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Short-term uncertainties about the infeed of intermittent renewables have been analyzed in stochastic

investment and dispatch models e.g. by Swider and Weber (2006) and Sun et al. (2008). Swider and Weber

(2006) use a stochastic model to estimate the integration costs of wind´s intermittency and show that larger

investments into thermal capacities are required when short-term stochastics of wind infeed are taken into

account. This result is confirmed by Sun et al. (2008) who find that neglecting short-term uncertainties about

wind infeed leads to an undervaluation of the operational flexibility and results in insufficient investments

of thermal power plants.

In contrast to the analysis of short-term uncertain renewable infeed, we analyze the influence of long-term

uncertain renewable penetrations induced by uncertainty about the achievement of political RES-E targets.

To our knowlegde, the impact of long-term uncertain residual load developments on the power system has

not been analyzed so far. Other long-term uncertainties, e.g. about demand, fuel or CO2 emission price

developments, either primarily correspond to uncertainty about how much capacity should be optimally

constructed (demand) or induce uncertainty about the optimal technology mix (fuel and CO2 emission

prices). In the context of uncertain future RES-E penetrations both, the optimal amount of dispatchable

generation capacities and the optimal technology mix is uncertain, because the level and the slope of the

future residual load duration curve as well as the volatility of the hourly residual load curve are unknown.

3. Model description and assumptions

In this section we describe the stochastic optimization model (3.1) and present the major assumptions

underlying the scenario analysis (3.2).

3.1. Model description

We use a linear multistage stochastic investment and dispatch model for electricity markets. The model

covers thermal and nuclear plants as well as storage units. In each model period, different nodes account for

different possible realizations of the residual load. In the following, we present the basic model equations

and describe how uncertainty is captured in the model. Used abbreviations for model sets, parameters and

variables are shown in Table 1.2

2The table only shows sets, parameters and variables used in the equations listed within this chapter. In addition, the model
comprises e.g. additional variables necessary for ramping or storage equations such as the hourly storage level in a storage unit.
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Table 1: Model abbreviations including sets, parameters and variables

Abbreviation Dimension Description

Model sets
d Day
h Hour
n Node
n1 alias of n Node (direct ancestor of n)
n2 alias of n Node (direct or indirect ancestor of n)
r Region
r1 alias of r Neighboring region of r
res RES-E technology
s Subset of t Storage technology
t Technology
y Subset of n Node (associated with a certain model year)

Model parameters
ad MW Exogenous capacity commissions
annuity e 2010/MW Technology specific investment costs (annuity)
attc e 2010/MWhth Attrition costs for ramp-up operation
co e 2010/t CO2 CO2 emissions prices
cres MW RES-E capacities
dsc % Discount factor
f e 2010/MWhth Fuel prices
fomc e 2010/MW Fixed operation and maintenance costs
heatpr e 2010/MWhth Heating price for end consumers
heatratio MWhth/MWhel Ratio for heat extraction
p % Occurence probability of node
β % Minimum generation level of power plants
η % Net efficiency
ηpartload % Net efficiency in partload operation
ρ MW Residual demand
θ MW Peak demand
τ % Capacity factor
γ % Capacity factor (RES-E plants)
ω t CO2 /MWhth CO2 emissions per fuel consumption

Model variables
C MW Installed capacity (net)
CADD MW Capacity commissions (net)
CRTO MW Capacity which is ready to operate (net)
CSUB MW Capacity decommissions (net)
CUP MW Ramped-up capacity (net)
G MW Electricity generation (net)
NI MW Net imports
S MW Consumption in storage operation
Z e 2010 Total system costs (objective value)

The objective of the model is to minimize total discounted system costs (equation 1) while satisfying

(residual) demand (eq. 2) and ensuring that peak demand can be met by securely available capacities in

each node (eq. 3). Equation 4 determines the capacity in each node which depends on investment decisions

made in previous periods and thus under uncertainty about the level and the structure of the residual load.
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min Z =
∑
n

[
p(n) · dsc(y) ·

∑
t,r

[[∑
n1

annuity(t) · CADD(t, n1, r)

]
+ C(t, n, r) · fomc(t) (1)

+

[∑
d,h

G(d, h, n, t, r)

]
·

[
f(y, t) + co(y) · ω(t)

η(t)

]

+

[∑
d,h

CUP (d, h, n, t, r)

]
·

[
f(y, t) + co(y) · ω(t)

η(t)
+ attc(t)

]

+

[∑
d,h

(CRTO(d, h, n, t, r) −G(d, h, n, t, r))

]
·

[
f(y, t) + co(y) · ω(t)

ηpartload(t)
− f(y, t) + co(y) · ω(t)

η(t)

]
· β

1 − β

−
∑
d,h

heatpr(y) · heatratio(t) ·G(d, h, n, t, r)

]]

s.t.

∑
t

G(d, h, n, t, r) +
∑
r1

NI(d, h, n, r, r1) −
∑
s

S(d, h, n, s, r) = ρ(d, h, n, r) (2)

τ · C(t, n, r) + γ · cres(res, n, r) ≥ θ(n, r) (3)

C(t, n) =
∑
n2

[
C(t, n2) + CADD(t, n2)

]
+ ad(t, y) − CSUB(t, n) −

∑
n1

[
CADD(t, n1) + ad(t, n1)

]
(4)

Total system costs comprise fix costs (investment and fixed operation and maintenance costs), variable

production costs including fuel and CO2 costs, ramp-up costs and costs arising due to efficiency losses in

part-load operation. We simulate ramp-up costs in this linear approach by referring to power plant vintage

classes and setting a minimal load restriction and additional costs for ramping-up (attrition (attc) and

extra fuel costs). In part-load operation fuel costs of power plants are higher due to lower efficiency values,

which is taken into account by a linear approximation. A heat remuneration for electricity generation in co-

generation mode is subtracted from total system costs. The heat remuneration corresponds to the assumed

gas price (divided by the conversion efficiency of the assumed reference heat boiler) which roughly represents

the opportunity costs for households and industries. Heat generation in co-generation plants is restricted by

a maximum heat potential per country and the inflexibility of electricity generation in co-generation mode

is represented by longer ramping times. All cost parameters are taken into account with the occurrence
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probability p(n) of the node n in which the costs arise.

The hourly residual demand per country and node, inflows to storage units and electricity exports have

to be met by generation from thermal, nuclear and storage plants and/or by electricity imports (eq.2). The

dispatch within each node is calculated for four typical days, representing a weekday and a weekend-day

in autumn/winter respectively spring/summer. Note that the model includes only long-term uncertain-

ties about the deployment of RES-E capacities and no short-term uncertainty about the hourly infeed of

renewables. The dispatch of generation and demand is realized under perfect foresight.

Peak demand (augmented by a security margin) per country and node has to be ensured by installed

capacities which are securely available at times of peak demand (eq.3).3 Thermal, nuclear and storage

capacities are accounted with a factor incorporating possible outages (planned or not planned; in the range

of 85-90 percent). Fluctuating RES-E contribute with a relatively low capacity credit (5% for wind, 0% for

photovoltaics).

Equation 4 determines the capacity in node n depending on the installed capacity and the investment

decisions made in its ancestor node n2. In addition, the installed capacity in node n is augmented by

exogenous capacity commissions (representing thermal, nuclear and storage power plants which today are

already under construction or in an advanced planning process) and reduced by capacity decommissions,

before or at the end of the technical lifetime of plant t. Thus, the model takes into account that power

plant investments have long planning, construction, amortization and lifetimes. The effect of long planning

and construction times is captured by the fact that investment decisions have to be made one period before

their commissioning and thus under uncertainty about the state of the world at commissioning time. The

effect of long amortization and lifetimes in uncertain environments is captured by the fact that when an

investment decision for a power plant is made, states of the world until the end of its lifetime are uncertain.

Apart from the basic equations, the model incorporates all common elements of linear dispatch mod-

els such as storage equations, ramping and minimum load restrictions, net transfer possibilities and the

possibility of RES-E curtailment.

3.2. Assumptions

In the following we present the major assumptions underlying the scenario analysis. For the illustrative

example (Section 4), cost assumptions for the year 2020 are used. For the analysis of RES-E implementation

risks on the electricity systems of Germany and its neighboring countries (Section 5), we model Germany,

3The peak demand corresponds to the highest demand before subtraction of fluctuating RES-E in-feed.
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Benelux (covering Belgium, the Netherlands and Luxembourg), Denmark, Czech Republic and Poland (”CZ

+ PL”), Switzerland and Austria (”CH + AT”) and France.

3.2.1. Electricity demand and potential heat generation in combined-heat-and-power (CHP) plants

Electricity demand is primarily driven by economic and population growth. Furthermore, improvements

in energy efficiency and the emergence of new technologies (such as electric cars) impact the development of

the electricity consumption. Based on these considerations, we assume that electricity demand will increase

until 2030 and stagnate afterwards. In addition to electricity demand values, Table 2 reports values for

heat demand, based on figures for electricity production in co-generation reported in Eurelectric (2008). In

order to reduce computational time, the option to generate electricity in combined-heat-and-power (CHP)

plants is restricted to countries in which CHP based electricity generation makes up a major part of todays

electrictiy generation.

Table 2: Net electricity demand in TWhel and (potential heat generation in CHP Plants in TWhth)

2020 2030 2040 2050

Benelux 226.2 (128) 241.7 (128) 241.7 (128) 241.7 (128)
CH + AT 140 (-) 149.5 (-) 149.5 (-) 149.5 (-)
CZ + PL 233.9 (146) 260.4 (146) 260.4 (146) 260.4 (146)
Denmark 43.1 (54) 46 (54) 46 (54) 46 (54)
Germany 611 (191) 628 (191) 628 (191) 628 (191)

France 523.6 (-) 558.3 (-) 558.3 (-) 558.3 (-)

3.2.2. Power plants

Table 3 depicts assumed investment costs for thermal, nuclear and storage technologies. In addition to

the listed technologies, the model comprises several technology classes to account for existing power plants.

Investments into nuclear, hard coal, lignite, open-cycle-gas-turbines (OCGT), combined-cycle-gas-turbines

(CCGT) and compressed-air-storages (CAES) are possible. Investments into nuclear plants are restricted to

countries which already have existing nuclear power plants and which did not agree on a political phase-out

of nuclear power. In addition, before 2025 only nuclear plants already under construction today can be

built due to long planning and construction times. For hard coal and lignite, state-of-the-art and innovative

power plants are considered in the model. Innovative hard coal plants are equipped with improved materials

and process techniques and thus able to run at 700 degrees celsius and higher pressures (350 bars) than

existing plants. The efficiency is assumed to increase by about 4 percentage points to 50% due to these

improvements. Investment costs are above state-of-the-art technologies but are decreasing due to learning

effects by around a third until 2050. ”Innovative” lignite technologies use a more efficient drying process
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than existing plants and can therefore increase their efficiency to 48%. Hard coal, lignite and CCGT plants

can also be build as CHP technologies. The investment costs of CHP plants include additional costs for the

grid and the extraction of heat. Due to the limited space potential, pump storage and hydro storage plants

are not an investment option.

Table 3: Investment costs of conventional and storage technologies in e 2010/kW

Technologies 2020 2030 2040 2050

Nuclear 3,157 3,157 3,157 3,157
Hard Coal 1,500 1,500 1,500 1,500
Hard Coal - innovative 2,250 1,875 1,750 1,650
Hard Coal - innovative CHP 2,650 2,275 2,150 2,050
Lignite - innovative 1,950 1,950 1,950 1,950
Lignite - innovative CHP 2,350 2,350 2,350 2,350
OCGT 400 400 400 400
CCGT 800 800 800 800
CCGT-CHP 1,100 1,100 1,100 1,100
Pump storage - - - -
Hydro storage - - - -
CAES 850 850 850 850

Table 4 shows the efficiency grades (at optimal operation and when operating at minimum load level),

technical availability, operational and maintenance costs and the technical lifetime for conventional plants.

Depicted efficiency grades correspond to those of newly constructed plants. CHP plants have lower electrical

but higher total efficiency grades than plants without co-generation option. For CHP plants, operational

and maintenance costs also include the costs for the heat extraction system. The availability factor reported

in Table 4 represents the average value of the four seasonal availability factors in the model and accounts for

planned and unplanned shut-downs of the plants, e.g. because of revisions. In addition, the availability factor

determines the contribution of thermal, nuclear and storage plants to the securely available capacity at times

of peak demand. For exogenously treated renewable plants we assume a contribution to securely available

capacity of 5% for wind and 0% for solar plants. Biomass and geothermal capacities are dispatchable plants

and accounted with a capacity credit of 80%.

Assumed CO2 factors (in t CO2 /MWhth) are 0.406 for lignite fired plants, 0.335 for hard coal fired plants

and 0.201 for gas fired plants.
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Table 4: Economic-technical parameters for conventional and storage technologies

Technology η(ηload) ηmin availability FOM-costs Lifetime
[%] [%] [%] [e 2010/kW ] [a]

Nuclear 33.0 28.0 84.5 96.6 50
Hard Coal 46.0 41.0 83.75 36.1 40

Hard Coal - innovative 50.0 45.0 83.75 36.1 40
Hard Coal - innovative CHP 22.5 17.5 83.75 55.1 40

Lignite - innovative 46.5 41.5 86.25 43.1 40
OCGT 40.0 20.0 84.5 17 20
CCGT 60.0 50.0 84.5 28.2 30

CCGT-CHP 36.0 26.0 84.5 40 30
Pump storage 87.0 (83.0) 87.0 95.25 11.5 100
Hydro storage 87.0 87.0 90.75 11.5 100

CAES 86.0 (81.0) 86.0 95.25 9.2 30

We assume that yearly lignite assumption is restricted to 350 TWhth in Germany and to 249 TWhth in

the region Czech Republic and Poland. In the other model regions, lignite is not a generation option because

the low calorific value and high moisture content of lignite leads to prohibitively high transportation costs

of lignite.

3.2.3. Fuel and CO2 emission prices

Table 5 lists the assumed development of fuel prices (including transportation costs to the power plants)

together with historical prices. After the high price year 2008, fuel prices have come down rapidely and

started to rebound afterwards. Assumptions concerning the fuel price development are mainly based on

EWI/energynautic (2011). Regarding CO2 prices, we assume that more restrictive quotas will lead to

increasing prices while an increasing RES-E share attenuates this effect. Overall, we assume that the

CO2 price increases up to 45 e 2010/t CO2 in 2050.

Table 5: Fuel costs in e 2010/MWhth and CO2 emission costs in e 2010/t CO2

2008 2020 2030 2040 2050

Oil 44.6 99.0 110.0 114.0 116.0
Coal 17.28 13.4 13.8 14.3 14.7

Natural Gas 25.2 28.1 30.1 32.1 34.1
Lignite 1.4 1.4 1.4 1.4 1.4

Uranium 3.6 3.3 3.3 3.3 3.3
CO2 22 25 35 40 45

3.2.4. Net transfer capacities

Table 6 depicts assumed net tranfer capacities (NTC), restricting im- and exports between model regions.

Assumptions are based on ENTSO-E (2010). For model regions representing several countries, such as
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Benelux, the NTC-values of the represented countries have been summed up.

Table 6: Net transfer capacities [MW]

DE FR Benelux CH+AT CZ+PL DK

DE - 3050 4830 3100 1600 1500
FR 2600 - 2900 3000 - -

Benelux 3980 1300 - - - -
CH+AT 4800 1100 - - 600 -
CZ+PL 3200 - - 800 - -

DK 2050 - - - - -

4. Theoretical discussion of effects and illustrative example

In this section we discuss the influence of RES-E infeed on the optimal electricity capacity mix, the

effects of uncertainty about future RES-E penetrations and means to measure these effects (Section 4.1). In

addition, we highlight the impact of uncertain future RES-E deployment paths in an illustrative modeling

example (Section 4.2).

4.1. Theoretical discussion of results

Uncertainty about future RES-E penetrations leads to uncertainty about the residual demand, which

has to be met by thermal and nuclear plants or by storage units. Figure 1 illustrates the influence of RES-E

infeed on the optimal mix of dispatchable power plants. The upper graph depicts an hourly load curve

without and after substraction of RES-E infeed. The middle graph shows the corresponding (residual) load

duration curves and the lower graph depicts the optimal mix of peak-, mid- and baseload plants depending

on their yearly utilization times.4

4An electricity load duration curve ranks load levels in a descending order of magnitude. The integral under the load
duration curve shows, how much electricity is demanded for how many hours per year. For the fraction of demand, which
is needed in nearly all hours of the year, plants with high fix and low variable costs (baseload plants) are cost-efficient while
demand peaks are cost-efficiently met by peakload plants, characterized by high variable but low fix costs (see e.g. Stoft (2002)).
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Figure 1: Effects of RES-E infeed on the optimal capacity mix

With high infeed from renewables, the residual load duration curve becomes steeper. In many hours, a

large part of the (residual) demand is met by renewables with negligible variable generation costs. Thus, the

(residual) demand fraction which is constantly high in almost all hours of the year shrinks. Consequently,

the optimal capacity mix comprises less baseload plants which need high utilization times in order to be

cost-efficient (yb < xb). In addition, these baseload plants achieve lower utilization times than without RES-

E infeed, due to a steeper residual load curve in the area of higher utilization times than h∗B . On the other

hand, fluctuating RES-E such as wind and solar plants are not necessarily available at times of high demand.

Thus, high electricity demands still need to be met by dispatchable power plants and the optimal capacity

mix comprises a larger amount of peak- and midload capacities (yp > xp and ym > xm) when RES-E shares
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are high (see also Lamont (2008) and DeJonghe et al. (2011)).5 This effect is further increased considering

security of supply requirements (not depicted in Figure 1). Due to low capacity credits of fluctuating RES-E,

a large share of dispatchable generation capacities are also needed in electricity systems with high RES-E

penetrations, in order to ensure that peak demand can be met with securely available capacities (see e.g.

Dena (2008) and Weigt (2009)).

In addition, the volatility of the hourly residual load curve increases with a higher RES-E share (upper

graph). Consequently, with an increasing RES-E share, the economic value of power plants with short

ramping times increases. Plants with a high capital/operating cost ratio are also those plants characterized

by long ramping times while plants with a low capital/operating cost ratio, such as open cycle gas turbines,

can be ramped up and down within short time frames. Consequently, the effect of an increasing (decreasing)

economic value of peakload (baseload) plants due to the steeper residual load curve, is increased by changing

ramping requirements. Also storage units have a higher economic value if demand volatility increases (see

e.g. Nagl et al. (2011)).

For these reasons, under uncertainty about future RES-E penetrations, it is uncertain whether the

optimal electricity mix should comprise large shares of baseload or rather large shares of peakload plants and

storage units. Means to measure the impact of this uncertainty on electricity system costs are the expected

value of perfect information (EVPI) and the value of the stochastic solution (VSS). The EVPI determines

the expected additional costs induced by uncertainty, if the uncertainty is taken into account by a stochastic

optimization procedure. The VSS corresponds to the additional costs (compared to the stochastic solution)

arising when investments are planned for the average realization of the random parameters (here: residual

load curves), without taking into account uncertainty. Thereby the VSS measures, how much stochastic

optimization can help to mitigate effects of uncertainty (Birge and Louveaux (1997)).

4.2. Illustrative example

In the following we present an illustrative modeling example in order to highlight effects of uncertain

future RES-E deployment paths on optimal investment choices (4.2.1) and system costs (4.2.2). We consider

one model region without existing power plant fleet and only two time periods. Furthermore, for reasons

of simplicity we assume in this illustrative example that the contribution of RES-E to security of supply

requirements is zero.

5One exception to this general impact of an increasing RES-E share on the slope of the residual load duration curve exists
for small shares of renewables whose infeed matches well with demand - i.e. small shares of solar based generation in countries
with demand peaks at noon, when solar radiation is also highest. In these cases, an increasing RES-E share (up to a certain
level) can even flatten the residual load duration curve.
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4.2.1. Effects of uncertainty on the optimal technology mix

In this illustrative example, investment decisions have to be made in period 0 under uncertainty about

the RES-E penetration in period 1, when RES-E shares of 0% (S1), 25% (S2) and 50% (S3) can be realized

with equal probability. Investments are possible into hard coal, CCGT and OCGT plants, representing a

baseload, a midload and a peakload technology. In addition, investments into storage units can be made.

Table 7 shows the investment decisions for each of the three branches given perfect information about their

realizations and the stochastic solution given uncertainty about RES-E penetrations in period 1. In addition,

utilization times are depicted.

Table 7: Investments [GW] and utilization times [h] with deterministic and stochastic planning

S1 (0% RES-E) S2 (25% RES-E) S3 (50% RES-E) stochastic

GW h GW h GW h GW h

Coal 83 6,969 61 6,869 41 6,660 50 7111 (S1); 6985 (S2); 5393 (S3)
CCGT 11 3,321 9 3,869 4 4,828 36 6455 (S1); 2792 (S2); 230 (S3)
OCGT 2 124 26 172 46 54 13 2248(S1); 0 (S2); 0 (S3)
Storage 8 1,191 7 1,377 15 1,188 5 1280 (S1); 647 (S2); 581 (S3)

It can clearly be seen, that the optimal deterministic power plant mixes vary significantly between the

scenarios. In scenario S1, without RES-E infeed, the capacity mix is dominated by coal capacities while

in scenario S3, with a 50% RES-E share, OCGT plants make up the largest share of capacities. Storage

capacities are deployed to the largest extent in scenario S3, characterized by the most volatile residual

load.6 Taking into account these uncertainties by a stochastic optimization approach, resulting investments

comprise more CCGT plants than in all deterministic scenarios. Investments into coal, OCGT and storage

capacities are in contrast lower than on average within the deterministic scenarios.

CCGT plants are beneficial under uncertainty because - under the assumed fuel and CO2 prices - they

have a medium capital/operating cost ratio compared to coal and OCGT plants. Figure 2 depicts generation

costs of coal, CCGT and OCGT plants (including annuitized capital costs and variable generation costs),

depending on their utilization times. In the case of a high RES-E penetration, when CCGT plants have a

low utilization and replace a part of the OCGT plants mainly built in order to ensure security of supply,

additional generation costs of CCGT plants are relatively low compared to additional costs arising if coal

plants would be mainly used for backup purposes. In the case of a low RES-E penetration, when CCGT

plants have a high utilization and substitute a part of coal generation, additional generation costs of CCGT

6It might seem surprising that the optimal storage capacities in scenario S2 are lower than in S1 although the RES-E share
is higher. The reason is that a large part of the RES-E infeed in S2 matches well with demand and even flattens demand peaks
at noon time due to photovoltaic infeed. Although wind infeed does not match well with demand at all times, the infeed in
scenario S2 does not lead to residual loads close to zero or even to negative residual loads such as in Scenario S3.

13



plants are relatively low compared to additional costs arising if a large part of demand would have to be

provided by OCGT plants.
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Figure 2: Generation costs of coal, CCGT and OCGT plants (depending on utilization times)

Reasons why storage units are deployed to a smaller extent under uncertainty are twofold. First, storage

units are technologies which - similar to coal and OCGT plants - are primarily beneficial in some deterministic

scenarios but have a low value if other scenarios are realized. Second, under stochastic planning, the high

value storage units have in some scenarios under deterministic planning, nearly disappears. Due to a steep

residual load duration curve and a high volatility of the hourly residual load in scenario S3, it is cost-efficient

to install a larger share of CCGT and OCGT plants than in other scenarios. Thus, electricity prices are

high during (residual) demand peaks, when plants with high variable generation costs are dispatched, and

low during hours with a high RES-E infeed. This high volatility of electricity prices renders a significant

number of storage units cost-efficient. Under stochastic planning, the optimal capacity mix comprises more

coal and CCGT plants than in the deterministic S3 scenario and OCGT plants are not dispatched at all.

Thus, under stochastic planning, the value for storage units is low within S3 because electricity prices have a
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lower volatility than under deterministic investment planning.7 In addition it is important to note that the

model incorporates the option of cost-efficient RES-E curtailment. Thus, a smaller amount of storage units

installed under uncertainty does not necessarily increase the ramping requirements for thermal power plants.

In this example, RES-E curtailment in scenario S3 in the stochastic solution is 4 TWh while a curtailment

of 2 TWh is cost-efficient in the case of deterministic investment planning.

4.2.2. Effects of uncertainty on system costs

Table 8 depicts system costs (excluding costs for RES-E generation) arising in this illustrative scenario

when the future is perfectly well known (deterministic planning), in the case of uncertainty under stochastic

planning and in the case of uncertainty when the uncertainty is not taken into account within the investment

planning process (average planning).

Table 8: System costs (exc. costs for RES-E generation) in Mio e , EVPI and VSS

det planning stoch planning av planning

S1 (0% RES-E) 41,166 42,040 43,966
S2 (25% RES-E) 31,253 31,736 31,285
S3 (50% RES-E) 21,960 23,269 23,105

average costs 31,460 32,348 32,785

EVPI 889
EVPI (% of det costs) 2.82%

VSS 437
VSS (% of det costs) 1.39%

In all scenarios total system costs are higher under stochastic planning than under certainty (deterministic

planning). In scenarios S1 and S2 a lower coal generation than under certainty leads to increasing variable

generation costs. However, capital costs are lower, such that in sum total system costs increase by 1.5 -

2%. In scenario S3 total system costs under uncertainty are 6% higher than under certainty because lower

variable costs do not outweigh additional capital costs. The EVPI, corresponding to the probability weighted

additional costs arising in all scenarios under stochastic compared to deterministic planning, amounts to

889 Mio e respectively to 2.82%, expressed as percentage of average deterministic system costs.

The VSS, evaluating the benefit of solving the stochastic solution, is difficult to measure, because - due to

different structures of the residual load curves and thus different ramping requirements - a planning for the

average residual load curve does not guarantee that demand can be met in all scenarios. When we optimize

7In scenario S1 in contrast, stochastic planning leads to a high OCGT generation compared to the deterministic case.
Electricity prices have a higher volatility than under deterministic planning and the 5 GW storage capacity, installed under
uncertainty, consequently has its highest utilization time in S1.
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capacities for the average residual load under the additional constraint that emand also needs to be met in

all other possible scenarios, the VSS amounts to 437 Mio e , representing 1.39% of average deterministic

system costs.8 Expressed differently, approximately one third of all costs arising due to uncertainty about

future RES-E penetrations can be avoided, by taking into account that the uncertainty exists.

5. Analysis of uncertain RES-E deployment paths in Germany and its neighboring countries

In the previous chapter we have shown, how uncertainty about future RES-E deployment paths changes

optimal investment plans for thermal power plants and storage units and that this uncertainty induces ad-

ditional costs. However, the remaining question is how significant these effects are in real-world electricity

systems. In this context, it is important to exactly define the source of uncertainty which is analyzed and

to determine possible bandwidth of realizations of the uncertain parameters according to this definition.

Specifically, uncertain future RES-E deployment paths have two potential sources: Political uncertainty and

uncertainty about the implementation of political plans. Political uncertainty arises when political targets

are unclear or when it is uncertain, whether targets will be changed e.g. after governmental elections. The

implementation of political plans can be uncertain even if reliable targets exist, for four principal reasons.

First, many RES-E technologies are relatively new technologies implying that technological and cost de-

velopments are uncertain and/or that limited experiences exist for construction and maintenance. Second,

favorable RES-E sites are often located far from demand centers and therefore the electricity network has

to be adapted. Third, local opposition may hinder the construction of new sites or transmission lines due

to visual or environmental concerns. Fourth, when RES-E is supported by a price-based promotion system,

such as by a feed-in-tariffs system, resulting RES-E quantities are inherently uncertain.

In the following, we try to quantify effects of uncertainty about the implementation of reliable long-term

political RES-E targets for Germany and its neighboring countries. We assume that a continuous increase

of RES-E until 2050 is a politically agreed and reliable target for Germany and its neighboring countries.9

Thus, we assume that the RES-E share increases within each model year and that only the magnitude of

the increase is uncertain because the progress of necessary infrastructure investments, public acceptance,

cost and technological developments of renewable energy technologies can´t be perfectly foreseen.

8In this auxiliary average residual load scenario, dispatch costs are only taken into account for the average residual load
scenario. However, chosen capacities have to be sufficient in order to meet demand in all scenarios.

9It is important to notice that also political uncertainty about future RES-E deployment paths exists. Binding RES-E targets
on a European level have only been formulated until 2020. In Germany, RES-E targets until 2050 have been additionally been
formulated (Energiekonzept (2010)). Not all other European countries have long-term RES-E strategies yet. In addition,
changes of political targets could occur with some probability. These risks are not incorporated in our model calculations.
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In this chapter we describe the scenario tree representing uncertainty about the implementation of politi-

cal RES-E targets (section 5.1) and present model results with regard to investment decisions, electricity

generation and system costs (section 5.2).

5.1. Representation of the RES-E implementation risk

In order to represent the RES-E implementation risk in the model we estimate possible bandwidths

of RES-E deployments within the next decades based on targeted growth rates indicated in the National

Renewable Energy Action Plans (NREAP)10, on actual trends regarding the achievement of these targets,

on possible obstacles to RES-E deployment and on space potential restrictions per technology and country.

The first model year considered in the analysis is 2015, when investment decisions have to be made

for power plants commissioning in 2020. The model year 2020 is represented by three nodes, taking into

account that the NREAP can be exactly reached but also be surpassed or not be reached. Lower RES-E

deployments than targeted represent a case in which slow progresses in grid and plant constructions, local

opposition to new power plant construction and/or a lack of funds hinders RES-E deployment. Especially

the achievement of wind offshore targets has been questioned recently because of slow progresses in grid

and plant constructions. In contrast, higher than targeted RES-E deployments represent a case in which

hardly obstacles to plant and grid construction exist and/or cost degressions of RES-E plants are higher

than foreseen. Especially photovoltaic targets are easily surpassed in price-based RES-E support systems

besides for very low promotion payment levels, because the support of the local population is often high and

the space potential is vast.

Table 9 depicts the RES-E capacities in 2010, the foreseen deployment in GW between 2010 and 2020

according to the NREAP and the installed RES-E capacities in 2020 when the NREAP is exactly reached,

surpassed or not reached. Historical capacities in 2010 are based on the NREAP documents, Eurelectric

(2009) and BMU (2011).

10Within the National Renewable Energy Action Plans the Member States of the European Union defined how the national
2020 RES targets according to the 2009 EU Directive on the promotion of renewable energy sources are broken down into
targets for the transporting, the heating and cooling and the electricity sector.
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Table 9: RES-E capacities in 2010 and 2020 [GW]

Region Technology 2010 growth NREAP NREAP 2020 > NREAP 2020 < NREAP 2020

Germany wind onshore 27 9 36 40 30
wind offshore 0 10 10 12 3
photovoltaics 17 34 52 60 35

biomass 7 2 9 10 8
geothermal 0 0 0 1 0

Benelux wind onshore 3 8 10 12 6
wind offshore 0 5 5 7 2
photovoltaics 0 2 2 4 1

biomass 2 3 5 6 5
geothermal 0 0 0 0 0

France wind onshore 6 13 19 25 10
wind offshore 0 6 6 8 1
photovoltaics 1 4 5 10 2

biomass 1 2 3 4 2
geothermal 0 0 0 0 0

CH + AT wind onshore 1 2 3 4 2
wind offshore 0 0 0 0 0
photovoltaics 0 0 0 1 0

biomass 1 0 1 2 1
geothermal 0 0 0 0 0

CZ+ PL wind onshore 1 5 6 9 3
wind offshore 0 1 1 1 0
photovoltaics 2 0 2 2 2

biomass 0 3 3 4 0
geothermal 0 0 0 0 0

Denmark wind onshore 3 0 3 3 3
wind offshore 1 1 1 2 1
photovoltaics 0 0 0 0 0

biomass 1 2 3 4 2
geothermal 0 0 0 0 0

For the timeframe after 2020, we estimate possible bandwidth for a high or a moderate RES-E deployment

pace based on the same considerations. For the case of favorable investment conditions, we assume that

the deployment between 2010 and 2020 according to the NREAP is carried forward in the coming decades

while in the presence of obstacles to RES-E deployment, the deployment is assumed to be one half of

this growth. For offshore wind we deviate slightly from this procedure, because experiences with offshore

plants are few and unused space potential in all considered countries is still vast. Thus, for offshore, the

deployment at high pace is assumed to be twice the development in the NREAP between 2010 and 2020,

while a deployment at moderate pace is assumed to be the same as within the NREAP. In addition, we take

into account that (space or fuel) potential restrictions (see Table A.1 in the Appendix) need to be respected

and that the maximal yearly RES-E production of all RES-E technologies reaches at most 90% of the annual

country-specific electricity demand.

18



Figure 3 recaptures the resulting structure of the scenario tree representing the RES-E implementation

risk for Germany and its neighboring countries. We assume that factors favoring and factors hindering a

high RES-E deployment pace are realized with the same probability such that all nodes depicted in Figure

3 have the same occurence probability. Also, with the chosen approach we implicitly assume that different

risks associated with the deployment of different RES-E technologies are positively correlated in all model

regions.11 In addition we assume that most uncertainties about technological and cost developments and

about grid construction progresses have resolved from 2040 onwards.12
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Figure 3: Structure of the scenario tree representing the RES-E implementation risk

Resulting RES-E capacities per node for the model years 2030 and 2050 can be found in the Appendix.

For example in Germany in the year 2030, RES-E capacities vary between 109 GW (node n12) and 187 GW

(node n1). In terms of RES-E generation, bandwidths are between 225 TWh and 383 TWh, which make

up 37% respectively 63% of the assumed electricity demand in 2030. In 2050 maximum assumed bandwidth

11Possible negative correlations could both increase or attenuate the effects of the RES-E implemenation risk. For example
a high offshore wind and a high photovoltaic penetration can lead to a less volatile residual load than a high penetration of
both technologies. Thus, including paths with high offshore and low photovoltaic penetrations may even increase the possible
bandwith of residual load curves captured in the scenario tree and increase effects of uncertainty. On the other hand, including
paths with high offshore and low onshore wind penetrations and vice versa may lead to increasing probabilities for these
”medium” paths such that effects of uncertainty diminish to some extent.

12In our analysis we focus on investments decisions until 2020 and corresponding dispatch decisions until 2025. In order
to include effects of long-term uncertainties on investment decisions with long amortization and lifetimes, we however include
nodes until 2060. Overall, the chosen scenario tree consists of 24 branches and 94 nodes.
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for Germany are between 141 GW (node n24) and 244 GW (node n1), resulting in RES-E shares of 47%

respectively 78% with our assumed demand development.13

5.2. Model results

In the following we analyze the effects of the RES-E implementation risk on investment and dispatch

decisions (section 5.2.1) as well as on system costs (section 5.2.2).

5.2.1. Effects of RES-E implementation risks on investment and dispatch decisions

Table 10 depicts investment decisions made in 2015 within all modeled countries. Within branch 1,

characterized by the highest possible RES-E penetration in all model years (NREAP surpassed in 2020 and

fast pace growth in each following period), only lignite and OCGT plants are constructed. In branch 24

with the lowest possible RES-E generation, also coal and CCGT plants are chosen. Lignite investments

are identical in all branches, because lignite generation is characterized by very low variable costs and is in

addition restricted to local fuel potentials. Note that nuclear is not an investment option in the first model

year.

Table 10: Investments in 2015 in all model regions [GW]

Branch 1 (max RES-E) Branch 24 (min RES-E) stochastic average of all det branches

Lignite 3 3 3 3
Coal 10 2

CCGT 3 3 2
OCGT 18 12 23 18

CHP-Coal
CHP-Gas

Nuclear
Storage

sum 21 28 29 25

Under uncertainty, no investments into coal plants take place. In contrast, CCGT and especially OCGT

investments are higher than on average under certainty. The result of lower coal and higher CCGT in-

vestments reflects the effect discussed in the illustrative modeling example (Section 4): As coal is only

cost-efficient in some scenarios, investments with lower capital/operating cost ratios are chosen under un-

certainty in order to hedge against the risk of high investment expenditures for plants which might only run

for few hours. In contrast, higher OCGT investments under uncertainty are only cost-efficient because of an

13For Germany an estimation about possible bandwidth of RES-E generation in a 5-year-period can also be found in the
medium-term RES-E generation forecast (IE Leipzig (2011)). As a lower bound for promoted RES-E generation in 2016, about
130 TWh are indicated, as a higher bound about 210 TWh. Although this bandwidth is based both on possible ranges for
RES-E deployment and for different wind and water infeed assumptions, it clearly confirms that even within a short time
horizon, RES-E developments can be quite uncertain.
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existing power plant fleet. In the illustrative modelling example lower OCGT investments are chosen under

uncertainty, because a high utilization of these capacities in the case of a low RES-E penetration would

induce high costs. Due to the existing power plant fleet of the Central European power market which is now

taken into account, the additional OCGT capacities built under uncertainty are not needed to meet demand

in 2020. Even in the scenario with the lowest RES-E penetration (branch 24), demand can be met by a

different dispatch of existing power plants such that the additional OCGT plants built under uncertainty

only serve as backup capacities in all scenarios. Specifically, the utilization of existing CCGT plants in

branch 24 is higher under uncertainty. In addition, generation in lignite-CHP plants is reduced such that

generation in non-CHP lignite plants can be increased (- due to the lignite fuel bound only a limited amount

of lignite can be used per year). CHP generation from lignite plants is replaced by a higher utilization of

gas and coal CHP plants. In addition, the utilization of pump storage plants is higher than under certainty

such that the utilization of existing baseload plants can be increased compared to the deterministic case,

when more investments into baseload plants are made in 2015. In branch 1, characterized by the highest

RES-E penetration, the different optimal investment plan under uncertainty leads to a higher amount of

total installed capacities and to a larger share of CCGT capacities in 2020. Consequently, a larger share of

demand in 2020 is met by CCGT plants instead of old coal plants which have higher variable costs than

new built CCGT plants due to low efficiency values.

These generation differences are recaptured in Figure 4. Interestingly, although in branch 1 and 24 uncer-

tainty leads to a replacement of coal by CCGT generation, this generation difference leads to lower variable

costs in branch 1 compared to the deterministic case while variable costs in branch 24 are comparatively

higher. While in branch 1 CCGT generation replaces coal generation in old existing coal plants, differences

in branch 24 occur because new efficient coal plants built in the deterministic case, are not available under

uncertainty.
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Figure 4: Generation differences in 2020 between deterministic and stochastic case [TWh]

Investment choices in 2020 between the stochastic and the deterministic solutions differ mainly because

the power plant fleet in the stochastic approach is adapted to newly available information about future

RES-E deployments. Table 11 depicts investment decisions made without uncertainty in branches 1 and 24

as well as the average values for all eight deterministic branches passing through node n1 respectively node

n3 and the stochastic values for nodes n1 and n3. Nuclear investments are identical in all deterministic and

stochastic cases because generation costs are comparatively low and investments are restricted (see Section

3). Lignite investments are also identical in all branches passing through the same 2020 node such that

investments into lignite plants are not subject to uncertainty.
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Table 11: Investments in 2020 in all model regions [GW]

Branch 1 av (n1) stoch (n1) Branch 24 av (n3) stoch (n3)

Lignite 7 7 7 10 10 10
Coal

CCGT 13 17 13 35 31 42
OCGT 34 31 28 15 17 8

CHP-Coal
CHP-Gas

Nuclear 6 6 6 6 6 6
Storage

sum 60 61 54 66 64 66

Considering node n1 (characterized by a surpassed NREAP), it can be seen that under certainty less

investments into CCGT and OCGT plants are made compared to the average investments in the determin-

istic scenario calculations. Lower investments are cost-efficient, because under uncertainty more CCGT and

OCGT plants have been constructed in the period before 2020. Considering branch 1, CCGT investments

in 2020 are identical in the stochastic and deterministic case. Thus, due to the higher CCGT investments

in 2015 under uncertainty, installed CCGT capacities in 2025 are higher than in the deterministic case.

Consequently, resulting dispatch decisions (branch 1) in 2025 hardly differ from those in 2020. Under un-

certainty, a larger part of demand is met by CCGT plants while generation from coal plants is lower than

under certainty.

Node n3 (low RES-E share) is characterized by substantially larger CCGT investments under uncertainty.

OCGT investments are in contrast lower than in the deterministic case. Additional CCGT capacities are

built in order to catch-up lower base- and midload plant investments (coal and CCGT) made in 2015. CCGT

rather than coal plants are chosen to catch-up lower baseload investments because increasing CO2 prices

and RES-E shares over time lead to an increasing relative value of CCGT plants compared to coal plants.

Fewer investments into OCGT plants are cost-efficient under uncertainty in 2020, because the capacity mix

already comprises larger OCGT-shares than under certainty due the 2015 investments. Resulting dispatch

decisions (branch 24) in 2025 are again characterized by a higher CCGT and pump storage generation and

by a lower coal generation than under certainty. Results for later model years generally reflect the same

effects and are thus not discussed in more detail.

5.2.2. Effects of RES-E implementation risks on system costs

Figure 5 depicts additional capital costs, additional variable costs and additional total costs arising in each

of the 24 branches due to the uncertainty about the magnitude and the pace of future RES-E deployments

in Germany and its neighboring countries. Depicted costs are discounted with a 5 % rate and accumulated
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until 2060. In branches with high RES-E shares, such as branch 1, investment planning under uncertainty

induces additional capital costs (+ 9 bn e 2010 until 2060 in branch 1) because many mid- and baseload

plants built under uncertainty are not cost-efficient for these branches. However, variable generation costs

decrease due to the availability of generation options with low variable costs (- 4 bn e 2010). In contrast, in

branches with low RES-E shares, such as branch 24, additional variable costs are high (+ 11 bn e 2010 until

2060 in branch 24) while capital costs are lower than in the deterministic case (- 9 bn e 2010).

-10

-5

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Bn. €2010 
[discounted and accumlated until 2060]

additional capital costs additional total costs additional variable costs

Figure 5: Additional costs induced by the RES-E implementation risk (per branch) [bn e 2010]

Total additional costs induced by uncertainty amount to 4 bn e 2010 on average. Compared to total

average deterministic costs, these costs however represent only 0.3%. One reason is, that investment re-

quirements are low in those periods, when uncertainty is highest.14 Investment decisions are exposed most

to uncertainty in 2015 when RES-E penetrations until 2060 are unknown. Besides exogenous commissions of

power plants which are already in the construction process today, investment requirements to meet demand

14In a quite different context, Manne (1974) finds that the expected value of perfect information about the date nuclear
breeder technology becomes available is very low (0.04% of average deterministic costs), because decisions can be defererred
to periods when uncertainty is at least partly resolved. Sufficient old power plants require only few investments in the period,
when uncertainty is highest.
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in 2020 are low. Endogenous investment decisions in 2015 amount to between 21 and 29 GW - representing

approximately 7% of total installed capacities. In addition, due to an existing power plant fleet, not all of the

new investments are necessarily needed to meet demand. For example in branch 24, stochastic investment

planning in 2015 does not lead to a higher OCGT generation in 2020 although from a capacity point of view,

some of the OCGT plants replace coal plants, built under certainty. Thus, the existing power plant permits

to postpone some investment decisions to a period when more information is available. Another reason for

low additional costs is that not all capacity investments are exposed to risk. Lignite and nuclear plants are

built in all paths nearly (lignite) respectively exactly (nuclear) to the same amount. Both technologies have

low variable costs and are in addition restricted by natural resource or political constraints.

6. Conclusions

Uncertainty about future RES-E deployment paths leads to uncertainty about the level and the slope of

the residual load which needs to be met by dispatchable power plants and storage units. We find that plants

with a medium capital/operating cost ratio and medium flexibility characteristics in terms of ramping times,

minimum load constraints and part load efficiency losses, are cost-efficiently deployed under uncertainty

about future developments of the residual load. In addition, investment decisions for capital-intensive plants

are postponed under uncertainty. Furthermore we have shown that the value of storage units in electricity

systems with high RES-E penetrations decreases, because investment planning under uncertainty leads to a

flatter merit-order curve compared to the the case of perfect foresight about high RES-E penetrations. The

impact on system costs however is rather small if we assume that a long-term increase of the RES-E share

is reliable and that only the magnitude and the pace of the increase are uncertain.

Based on our analysis, the following implications can be drawn for optimal investment planning and pol-

icy. Firstly, it is important to take into account possible implementation risks associated with RES-E targets

because a different technology choice or a different point of time might be beneficial for the investment.

Secondly, many old power plants whose decommissioning might seem cost-efficient based on deterministic

optimization models are valuable under uncertainty. Thirdly, reliable long-term political targets are crucial

in order to limit uncertainty. Fourthly, the effects of RES-E implementation risks need to be considered in

the ongoing debate about the necessity of capacity payments in the context of an increasing RES-E share.

From deterministic model calculations it is known that with an increasing RES-E share, a large amount

of backup capacities is needed, which however only run for very few hours. The capacity payment debate

focuses on the question whether investment incentives for these plants are high enough without additional
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payments. Our analysis shows that under uncertainty about the pace of future RES-E deployments, power

plants are needed which are only dispatched if RES-E deployment plans progress slowly. We analyze the

effects of RES-E implementation risks from the perspective of a risk-neutral central planner, who recovers all

costs on average. However, in some scenarios electricity prices are not sufficient to cover investment expen-

ditures. Whether risk-averse investors would invest within this uncertain environment without additional

incentives, is an interesting area of further research. Also, we have focused on only one source of uncertainty

associated with the envisaged transformation process towards a low-carbon and mainly renewable based

European electricity system. However, this transformation process relies on three pillars: An increasing

share of renewable energy, increasing energy efficiency and a reduction of CO2 emissions. In this context,

future CO2 prices and the progress of energy efficiency measures are additional sources of uncertainty about

the optimal capacity mix of conventional power plants and storage units. A combined analysis of these un-

certainties provides an interesting area of further research and would contribute to a better understanding

of optimal power plant investment planning within the context of the envisaged transformation process.
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Appendix

Table A.1: Assumed potential restrictions

Technology Germany Benelux France CH + AT CZ + PL Denmark

Wind Onshore [km2] 2174 497 3215 252 2429 300
Wind Offshore [km2] 7200 11054 4050 - 1410 8520

Biomass [TWhth] 177 44 356 42 141 34

Table A.2: RES-E capacities in 2030 [GW]

Region Technology n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11 n12

Germany wind onshore 48.5 46.4 46.4 44.3 44.3 42.2 42.2 40.0 38.5 36.4 36.4 34.3
wind offshore 31.7 26.8 26.8 21.9 29.7 24.8 24.8 19.9 22.7 17.8 17.8 12.9
photovoltaics 94.4 85.8 85.8 77.2 86.2 77.6 77.6 69.0 69.4 60.8 60.8 52.2

biomass 11.7 11.2 11.2 10.6 11.0 10.5 10.5 9.9 10.2 9.7 9.7 9.1
geothermal 0.8 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.3 0.2 0.2 0.2

Benelux wind onshore 15.0 15.0 15.0 15.0 15.0 15.0 15.0 14.0 13.5 11.7 11.7 9.8
wind offshore 17.2 14.7 14.7 12.1 15.6 13.0 13.0 10.5 12.2 9.7 9.7 7.1
photovoltaics 5.7 5.3 5.3 4.9 3.9 3.5 3.5 3.0 2.7 2.3 2.3 1.9

biomass 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

France wind onshore 38.5 35.1 35.1 31.7 32.5 29.1 29.1 25.7 23.5 20.1 20.1 16.7
wind offshore 20.0 17.0 17.0 14.0 18.0 15.0 15.0 12.0 13.0 10.0 10.0 7.0
photovoltaics 14.4 13.3 13.3 12.2 9.2 8.1 8.1 7.0 6.4 5.3 5.3 4.2

biomass 6.0 5.5 5.5 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0
geothermal 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0

CH + AT wind onshore 5.6 5.2 5.2 4.8 4.2 3.8 3.8 3.4 3.6 3.2 3.2 2.8
wind offshore 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
photovoltaics 1.2 1.2 1.2 1.1 0.6 0.6 0.6 0.5 0.5 0.5 0.5 0.4

biomass 3.3 3.0 3.0 2.6 2.6 2.2 2.2 1.9 2.3 2.0 2.0 1.6
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

CZ+ PL wind onshore 14.0 12.8 12.8 11.5 11.3 10.1 10.1 8.8 8.0 6.8 6.8 5.5
wind offshore 2.0 1.8 1.8 1.5 1.5 1.3 1.3 1.0 1.0 0.8 0.8 0.5
photovoltaics 2.0 2.0 2.0 2.0 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7

biomass 6.3 5.6 5.6 4.9 5.8 5.1 5.1 4.4 3.1 2.4 2.4 1.7
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Denmark wind onshore 2.7 2.8 2.8 2.8 2.3 2.4 2.4 2.5 2.3 2.4 2.4 2.5
wind offshore 2.3 2.3 2.3 2.2 1.7 1.6 1.6 1.5 1.3 1.3 1.3 1.2
photovoltaics 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

biomass 3.9 3.8 3.8 3.7 3.2 3.1 3.1 3.0 1.9 1.8 1.8 1.7
geothermal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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