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Abstract

Energy conversion in the production of goods and services, and the resulting emissions
associated with entropy production, have not yet been taken into account by the
mainstream theory of economic growth. Novel econometric analyses, however, have
revealed energy as a production factor whose output elasticity, which measures its
productive power, is much higher than its share in total factor cost. This, although
being at variance with the notion of orthodox economics, is supported by the standard
maximization of profit or time-integrated utility, if one takes technological constraints
on capital, labor, and energy into account. The present paper offers an explanation of
these findings in the picture of a sledge, which represents the economy, on the slope
of a niveous mountain, which represents cost. Historical economic trajectories indicate
that the representative entrepreneur at the controls of the sledge steers his vehicle
with due regard of the barriers from the technological constraints, observing “soft”
constraints, like the legal framework of the market, in addition. We believe that this
perspective contributes to resolving the paradox that energy hardly matters in main-
stream growth theory, whereas it is an issue of growing importance in international policy.

Keywords: energy, economic growth, oil price, profit maximization, technological con-
straints, output elasticities
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1 Introduction

Greenhouse-gas emissions must be reduced drastically, by up to 80% until the year 2050,
if the increase of the surface temperature of the earth should not exceed 2 ◦C. This is
consensus among practically all nations, by now. However, an agreement on internation-
ally binding emission limits is difficult to reach, because important actors like the USA,
China, and India fear that emisson reductions will restrict energy utilization – which
causes about 65% of greenhouse-gas emissions [1] – and thus threaten economic growth.
Furthermore, economic growth had suffered in the past during the first and the second
oil price explosions, shown in Fig. 1, and the oil price increases since 2005 may have con-
tributed to the economic crises since 2007 [2]. On the other hand, mainstream economists
disregard energy as a factor of production. In their view, only capital and labor matter
for the generation of goods and services, which make up the output of an economy,1 and
technological progress, like “mannah from Heaven”, takes care of the rest. This rest, the
notorious “Solow residual”, exceeds 50 percent of gross domestic product in many highly
industrialized economies.

If, occasionally, energy is taken into account, e.g. in the economics of climate change
[3], one concludes from a special type of economic equilibrium that energy’s economic
weight, called output elasticity, should be equal to its share in total factor cost. This
share has been roughly a meager 5 percent in major industrial countries2 during the last
five decades, while labor gets the lion’s share of about 65 percent and capital 30 percent.
Consequently, energy plays no, or only a minor role in the mainstream theory of economic
growth, whose adherents also firmly believe in complete factor substitutability.3 Thus,
we have the paradoxical situation that the USA, homeland of most of the Nobel laureates
in economics, strongly opposes internationally binding agreements on the reduction of
emissions from the combustion of fossil fuels, fearing that reductions of this combustion,
and of the energy supply that results from it, will endanger economic growth, while at
the same time economic theory says that energy hardly matters for growth.4

Two solutions of the paradox are conceivable. Either the US negotiators at the UN
conferences on climate change behave irrationally, or mainstream economists’ view of
energy is wrong, climate stabilization and economic growth are competing objectives
under the fossil-fuel regime without carbon capture and storage, and the hard negotiations

1Typically, the Nobel laureate in economics and father of standard growth theory, Robert A. Solow,
stated: “The world can, in effect, get along without natural resources”, although he cautioned that “if
real output per unit of resources is effectively bounded – cannot exceed some upper limit of productivity
which is not far from where we are now – then catastrophe is unavoidable”. [4]

2The “Tranche I Taxation Study” for the UN Framework Convention on Climate Change states:
“...energy expenditures amount to a relatively low percentage of Gross Domestic Product within OECD
countries (between three and 11 % on a purchasing power parity basis with a 5.8% average for OECD as
a whole)...”[5].

3During an international conference on natural resources, a young economist gave a talk on energy
in the economy [6]. He explained that, because of the first law of thermodynamics, it is impossible to
substitute capital for energy completely. A world-famous mathematical economist jumped up, interrupted
him, and irate he shouted: “You must never say that! There is always a way for substitution!” N.B.:
The standard Cobb-Douglas production function with energy as third input besides capital and labor
assumes (asymptotically) complete factor substitutability, i.e. it includes the possibility of producing a
certain output with arbitrarily small energy input, if capital or labor are increased sufficiently.

4Thus, all efforts to secure oil supplies that go beyond those of securing the supplies of important raw
materials like coltan and rare earths would be difficult to justify theoretically.
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on binding emission limits do have a serious economic basis in the real world. Furthermore,
if the second alternative is correct, increasing scarcity of conventional oil and gas, for the
reasons pointed out by the “peak oil” theory [2, 7], will cause economic problems in the
future.

In this paper, we try to explain how econometric analyses that reveal energy as an
essential factor of production, can be understood by a reappraisal of economic equilibrium
and of behavioral assumptions. The explanation is based on a mathematical framework
that deviates from that of standard economics in the calculation of output elasticities.5

2 Natural laws, technological constraints, and

wealth production

The real world is governed by the laws of nature. The most powerful ones are the first
and the second law of thermodynamics. They say that nothing happens in the world
without energy conversion and entropy production. Thus, there is no economic production
and growth whatsoever without energy conversion. And entropy production, inevitably
coupled to energy conversion, results in the emission of heat and particles that may
change the environment, including the climate [8]. This imposes limits to growth on
earth. Furthermore, entropy production reduces the potentials of energy conservation:
Thermoeconomic optimization at a fixed demand for industrial energy services cannot
reduce primary energy input by much more than 50 percent.

Therefore, economic growth faces obstacles that are rooted in “the constitution of the
universe”, as the first and the second of thermodynamics are sometimes called. They
are ignored by standard economic theory. The first step to reconciling the science of
economics with these laws is taking energy into account as a factor of production on an
equal footing with capital and labor. This includes proper calculation of each production
factor’s output elasticity, which, roughly speaking, gives the percentage of output change
when the factor changes by one percent, while the other factors stay constant. It indicates
the productive power of the factor.

In standard economics the output elasticities are obtained from the conditions for
the neoclassical economic equilibrium, which is computed under idealizing behavioral and
technological assumptions. According to the former, the only objectives of economic
actors are either the maximization of profit or of time-integrated utility. According to
the latter, there are no constraints whatsoever on the combinations of capital, labor,
and energy, so that the optimization calculus can determine the equilibrium in any point
of positive factor space. In this equilibrium, output elasticities are equal to factor cost
shares. We call this the cost share theorem. But from an engineering point of view it is
obvious that there are technological constraints on factor combinations. They concern the
capital stock, which consists of all energy conversion devices and information processors
and the buildings and installations necessary for their protection and operation. They
are given by the fact that i) the degree of capacity utilization cannot exceed 1 and ii) the
degree of automation of the capital stock cannot exceed a time-dependent number that is
less than or equal to 1. Inclusion of these constraints in the optimization calculus leads to

5Evolutionary economists comment that they agree with our results but dislike our methods, which,
in their view, are still too close to neoclassical economics. Rather, economics should be completely based
on non-equilibrium thermodynamics [9].
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equilibrium conditions, where shadow prices, which translate technological contraints into
monetary terms, add to factor prices [10]. If at a given time factor prices are such that
the cost-minimizing equilibrium actually borders on one or even on both barriers from
the technological constraints, one or even both shadow prices are non-zero, and the cost
share theorem is invalid. Thus, even if one accepts the behavioral assumptions of standard
economics, output elasticities are in general not equal to factor cost shares. Consequently,
they have to be determined otherwise.

An alternative way of computing output elasticities, which is independent from any
behavioral assumptions, has been developed since the 1980s. It is summarized in [8, 11],
and is briefly sketched in the Appendix. It is based on the usual requirement that the
output of an economic production system at a given time should only depend on the
production factors at that time, i.e. the production function, which describes the output
as a function of the inputs, must be twice differentiable. Then, at any fixed time t, a
growth equation holds, which says that the growth ratio of output is the weighted sum
of the growth ratios of capital, labor, and energy. The evolution of the economy can be
computed by integrating the growth equation along any convenient path in the capital-
labor-energy space that is accessible to the economy. The weights of the production
factors in the growth equation are the output elasticities. We call them α for capital,
β for labor, and γ = 1 − α − β for energy. They have to satisfy a set of three coupled
partial differential equations, whose most general solutions are any differentiable functions
of the ratios of labor to capital and of energy to capital. The special solutions, and the
resulting exact production function, could be computed, if for a given economy one knew
the appropriate boundary conditions of the differential equations exactly. This, however,
is impossible. The reason for that is indicated in the Appendix. Therefore, all output
elasticities and production functions are only approximations.

The simplest approximation are constant output elasticities α0, β0, and γ0. The
corresponding integral of the growth equation is the energy-dependent version of the well-
known Cobb-Douglas production function. The simplest factor-dependent solutions are
the output elasticities αL1 = a(l + e)/k, βL1 = a (cl/e − l/k), and γL1 = 1− ae/k− acl/e;
here the dimensionless numbers k, l, and e are multiples of capital, labor, and energy
in a base year t0. They belong to the (first) LinEx production function, which depends
linearly on energy and exponentially on factor quotients. They satisfy the asymptotic

boundary conditions that αL1 should vanish for vanishing ratios of labor and energy
to capital and thus reflect the law of diminishing returns, and that βL1 should vanish,
when the capital stock approaches the magnitude km required for maximum automation,
and when simultaneously the energy input approaches the quantity em = ckm that is
demanded by the fully utilized capital stock km; furthermore, the input of (routine) labor
in the state of maximum automation should be much smaller than em and km. The
integration constants a (capital effectiveness) and c (energy demand of the capital stock)
are technology parameters that are determined econometrically, subject to the restrictions
that output elasticities must be non-negative.6

The LinEx function reproduces economic growth, and the recessions during the first
and second oil-price explosions, in the USA, Japan, and Germany during a significant
part of the 20th century with small residuals and good statistical quality measures. Its

6The restrictions can be handled by the Levenberg-Marquardt method. Some time depence of a and
c has to be allowed, if OLS fitting of the LinEx function is done to empirical time series of output that
comprise more than two decades [8].
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Figure 1: Development of the price of one barrel of crude oil since 1861 in
2009 US dollars, upper curve, and in dollars of the day, lower curve. Source:
http://www.pdviz.com/historical-crude-oil-prices-1861-to-2009

time-averaged output elasticities, which are roughly ᾱL1 ≈ 0.4, β̄L1 ≈ 0.1, and γ̄L1 ≈ 0.5,
are for energy much larger and for labor much smaller than the cost shares of these factors
[8, 11, 12, 13]. This is confirmed by cointegration analysis. The energy-dependent Cobb-
Douglas function with output elasticities that are close to the time-averaged LinEx output
elasticities also reproduces growth, but with somewhat larger residuals and worse statis-
tical quality measures. Energy accounts for most of the growth that standard economics
attributes to technological progress and related concepts.

Orthodox economists reject this heresy. Their basic objection is: If the output elas-
ticity of energy were much larger and that of labor were much smaller than the cost
shares of these factors, profit-maximizing entrepreneurs would raise the input of energy
and lower that of labor until output elasticities and cost shares would be equal. The
simple, direct reply to this is: Increasing the energy input by the required amount would
drive the economy right against one or both of the technological shadow-price barriers
and prevent it from reaching the neoclassical equilibrium. Furthermore, awareness of the
these barriers and “soft” constraints will keep the evolution of real-life economies at some
distance from the barriers. Subsequently we try to describe this in the picture of a sledge
on a snow-covered slope, and substantiate this picture by the quantitative analysis of a
historical trajectory.

3 The economy in the cost mountain

We consider the mountain of factor cost that rises above the plane that is spanned by
the input ratios “labor/capital” and “energy/capital”. Snow fall, which may also trigger
avalanches, and the resulting changes of the niveous topography of the mountain slope,
represent changing factor prices. Shadow-price barriers that definitely block access to
certain regions of the mountain represent the technological constraints. The economy
is a sledge that moves on the slope. It is handled by the representative entrepreneur
(REPRENT) according to his set of objectives. The behavior of this entrepreneur is
the resultant from the decisions and actions of all real-life economic actors. The cost
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Figure 2: The solid line indicates the path of the German industrial sector “Warenpro-
duzierendes Gewerbe” (GWG) in the cost mountain between the years 1960 and 1981,
projected onto the u − v plane; u ≡ l/k and v ≡ e/k, where k, l, and e are multiples
of capital, labor, and energy in the base year t0 = 1960. Full squares mark the shadow-
price barrier from the limit to capacity utilization. Direction and length of the arrows
above the path indicate directions and strengths of the negative cost gradients, whose
components are calculated with the LinEx production function; arrow lengths are for
the 1970 output. Below the path, the lines without arrow heads indicate the negative
cost gradients obtained with the energy-dependent Cobb-Douglas function, whose output
elasticities are close to the time-averaged elasticities of the LinEx function. The gradients
depend little on the type of production function. What matters is the magnitude of the
output elasticities. For details see the text and the Appendix.

mountain, which represents negative profit as well, is mathematically described in the
Appendix. In Fig. 2 the trajectory of the German industrial sector “Warenproduzierendes
Gewerbe” (GWG) in the cost mountain and the negative cost gradients are projected onto
the mountain base, as an example.7 The considered time is that between the years 1960
and 1981, when during the first and the second oil-price explosions, shown in Fig. 1, the
aggregate energy price increased in Germany by a factor of 2.5.8 Similar price shocks
hit the other industrial market economies and triggered their first two serious post-war
recessions. During these recessions, the downturn of economic output closely followed the
decrease of energy input [8]. Since then, energy conservation measures have been taken,
and energy-intensive, polluting production processes have been shifted abroad. As a

7GWG is the pillar of the German economy. It produced about 50 percent of (West) German GDP
in the 1960s and 1970s [8].

8However, the changing energy prices have little influence on the cost gradients, because energy’s cost
share is small, even in the oil price maxima. The numbers are given in [14].
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result, the technology parameters a and c of the LinEx function acquire a time dependence,
which, however, has been negligible for the time span covered by the trajectory in Fig. 2.

The general direction of this trajectory is at a large angle to the negative cost gra-
dients, which point toward the region of small u ≡ l/k and much larger v ≡ e/k. Only
during times of economic upswings, as from 1967-1970, 1972-1973, and 1975-1979, the
path follows temporarily the negative cost gradients toward the barrier from the limit
to capacity utilization. This shows that increasing the energy input into the machines
that were not fully used in times of recessions, rapidly increases output and profit. The
isolated point, marked by 1989, indicates that, until German reunification in 1990, the
general direction of the path toward strongly decreasing u and moderately decreasing v
continues. It is more or less parallel to the shadow-price barrier from the limit to capac-
ity utilization. Obviously, the pilot of the sledge, i.e. the REPRENT of the economic
sector GWG, sees this barrier and steers his vehicle along it, but without touching it.
This leaves maneuvering space for him in the sense that capital, labor, and energy can
be chosen freely on the uphill side of the barrier. Neither does the REPRENT steer the
sledge right downhill along the negative cost gradients toward the region of maximum
automation, where v is close to 1 and u is very small.9 The REPRENT is obviously
aware of a much closer barrier to automation, which results from volume, mass and en-
ergy demand of the information processors in the capital stock. Imagine the vacuum-tube
computers of the 1960s, when the tiny transistor, invented in 1947 by Bardeen, Brattain
and Shockley, had not yet diffused into the capital stock. A vacuum-tube computer with
the computing power of a 2010 notebook computer would have had a volume of many
thousands of cubic meters. In the 1960s, a degree of automation, that is standard 40
years later in the highly industrialized countries, would have resulted in factories many
orders of magnitude bigger than today, probably exceeding the available land area.[8]
Thus, a path of economic evolution is chosen that reduces the input of expensive routine
labor, substituting cheaper energy/capital combinations for it, without trying to put the
economy right at a shadow-price barrier. Along this path the REPRENT satisfies the
increasing demand for goods and services with decreasing energy content (i.e. more infor-
mation technology and less excavation of construction sites by bulldozers, for instance),
and he also uses more and more imported intermediate goods, whose embodied energies
do not show in the national energy balances. Gaining a larger share of the market is also
an objective that sacrifices short-term cost minimization for long-term profit gains. He
also has to observe legal and social obligations that impede the firing of workers when
instant cost cutting would suggest it. He may also understand the long-term benefit of
keeping at least the core of a well trained, loyal workforce.

The empirical data on capital, labor, and energy, obtained from the national statistics
and compiled in [8], show that until 1973 the evolution of the sectors “Industries” of the
USA and Japan differs from that of Germany: Labor grows in the USA, and remains
nearly constant in Japan, whereas capital and energy increase at nearly the same rate in
both countries. In GWG, on the other hand, the input of energy grows much less than the
capital stock, and labor always decreases. But after the first oil price shock, the growth of
energy is significantly reduced in all three systems, while the growth of capital continues

9There, βL1 vanishes for e → em = ckm, and c is close to 1 for most of the considered time span. In
the present LinEx approximation the shadow-price barrier from maximum automation connects to the
restriction that β must be non-negative, i.e. e ≤ ck for any k, so that its shape is uncertain and its
location can be only circumscribed by v ≈ 1 and u << 1.
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as before. In the USA and Germany the energy input oscillates in response to the oil
price variations, and in Japan it nearly flattens out. Consequently, the US and Japanese
path in the u − v plane stays close to v = 1 until 1973 while u decreases, and after 1973
both u and v decrease. Then, the REPRENTs of US and Japanese industries seem to
behave similar to the REPRENT of GWG.

4 Conclusions and outlook

The assumption that economic evolution is governed by unconstrained, instant profit max-
imization must be modified. The representative entrepreneur of real-life economic actors,
who runs the economy, is aware of and stays away from the shadow-price barriers that
prevent the economy from reaching the equilibrium that is characterized by the equality
of output elasticities and factor cost shares at the prices of capital, labor, and energy we
have known so far. He also observes the “soft” constraints from the demand of consumers
and investors, and from social and legal obligations as well. These soft constraints are
much harder to model mathematically than the technological constraints, but in combi-
nation with the latter they determine the sequence of operating points through which the
economy actually passes. The pilot of the sledge in the cost mountain does not simply
dash downhill, but rather trots along a path that is shaped by his multi-component set
of constraints and objectives.

Nevertheless, the imbalance between the economic weights and the costs of labor
and energy does show in the evolution of real-life economies. The path in Fig. 2 is

a cost-reducing trajectory along which cheap, powerful energy/capital combinations of
high productive power substitute for expensive labor of low productive power. This long-
term trend, which is present in all highly industrialized countries, increases automation,
eliminates more and more jobs for routine labor, and maintains or even increases the level
of climate-changing emissions. Therefore, the legal framework of the market, which is
arguably the most powerful “soft” constraint, needs new adjustments to prevent growing
unemployment, or the substitution of poorly-paid part-time jobs for well-paid full-time
jobs, and pollution. Taxation of energy [2] according to its productive power, and the
corresponding reduction of taxes and levies on labor, may be such an adjustment, which
should also contribute to resource conservation and the preservation of social and climate
stabilitiy [8]. Decision makers who aim at economic growth, social well being, and climate
protection face great challenges as long as fossil fuels power substantial parts of our
economies.

We propose to substantiate and extend these conclusions more rigorously within the
conventional framework of modeling production and growth, taking into account the high
productive power of energy through energy’s output elasticity in the production function,
in combination with the relevant technological and further constraints in the calculus of
the representative entrepreneur on the choice of factor inputs. This implies the following
procedure and research agenda: i) estimation of an energy-dependent production func-
tion (as described in Section 2), ii) estimation of the “hard” technological constraints on
the utilization and automation of the capital stock (as indicated in Section 3 and the
Appendix), and iii) mathematical modeling and estimation of the effect of the “soft” con-
straints, which include the organizational, financial, social, and legal issues that in the real
world influence entrepreneurial decisions on the choice of factor inputs. It is important
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to note that both the “hard” technological constraints and the effects of the additional
“soft” constraints have to be taken into account in order to reproduce empirical trajec-
tories of production systems as a solution to cost minimization. This is the result of our
analysis of the empirical trajectories in the cost mountain. Once the optimization prob-
lem, including hard and soft constraints, is calibrated to reproduce observed economic
data by definition, the model could be used to develop scenarios of the future. The new
model might also be specified in such a way as to replace conventional parametrizations
in economic computable general equilibrium (CGE) models, on which policy analyses are
based in many cases. The main benefit would be to take into account the empirically high
importance of the factor energy in a consistent manner.

Acknowledgement
We thank Sebastian Kranz for helpful discussions.

5 Appendix: The cost mountain and its barriers

We consider an economy that produces its output Y (t) at time t with the production
factors capital K(t), labor L(t), and energy E(t). As in standard economics, we assume
that one can describe this output by a linearly homogeneous, macroeconomic production
function Y [K(t), L(t), E(t); t], which depends only on the actual inputs K(t), L(t), E(t)
and not on the path along which the system has arrived at these inputs. Therefore,
the production function must be twice differentiable with respect to K, L, and E.10 It
may explicitly depend upon time when innovations change its technology parameters.
Research into this type of production function since the early 1980s has been summarized
by [8, 11].11 It is convenient to present its results in terms of the dimensionless inputs

k(t) ≡
K(t)

K0

, l(t) ≡
L(t)

L0

, e(t) ≡
E(t)

E0

, (1)

the dimensionless output y(t) ≡ Y (t)/Y0, and the dimensionless production function

y[k, l, e; t] ≡
Y [kK0, lL0, eE0; t]

Y0

, (2)

where K0, L0, E0, and Y0 are the inputs and the output in a base year t0. For the sake
of simplicity we omit the time arguments of the factors. From the total differential of
y[k, l, e; t] one obtains the growth equation

dy

y
= α

dk

k
+ β

dl

l
+ γ

de

e
+ δ

dt

t − t0
; δ ≡

t − t0
y

∂y

∂t
. (3)

The output elasticities of capital, α, labor, β, and energy, γ,

α ≡
k

y

∂y

∂k
, β ≡

l

y

∂y

∂l
, γ ≡

e

y

∂y

∂e
(4)

10The requirement of twice differentiability of thermodynamic potentials like internal energy, enthalpy
and free energies leads to the Maxwell relations in thermodynamics.

11Objections against the concept of the aggregate macroeconomic production functions are also dis-
cussed and refuted in [8, 11].
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are related to each other by the twice-differentiability condition of equal second-order
mixed derivatives of y[k, l, e, ; t] with respect to k, l, e :

l
∂α

∂l
= k

∂β

∂k
, e

∂β

∂e
= l

∂γ

∂l
, k

∂γ

∂k
= e

∂α

∂e
. (5)

If one takes into account that α+β+γ = 1 at any fixed time t, because the production
function is linearly homogenous in k, l, e, eq. (5) turns into the coupled partial differential
equations for the output elasticities:

l
∂α

∂l
= k

∂β

∂k
, k

∂α

∂k
+ l

∂α

∂l
+ e

∂α

∂e
= 0, k

∂β

∂k
+ l

∂β

∂l
+ e

∂β

∂e
= 0 . (6)

Their most general solutions are

α = A

(

l

k
,
e

k

)

, β = B

(

l

k
,
e

k

)

=
∫ k l

k′

∂A

∂l
dk′ + J

(

l

e

)

, γ = 1 − α − β ; (7)

here A(l/k, e/k) and J(l/e) are any differentiable functions of their arguments. The
output elasticities, and thus the combinations of k, l, e, must satisfy the restrictions

α ≥ 0, β ≥ 0, γ = 1 − α − β ≥ 0 , (8)

which result from the technical-economic requirement that all output elasticities must be
non-negative. Otherwise, the increase of an input would result in a decrease of output—a
situation the economic actors will avoid.

It is not hard to verify with the help of eqs. (3) and (7) that the corresponding general
form of the twice-differentiable, linearly homogeneous production function is given by the
r.h.s. of

y(t) = eF

[

l

k
,
e

k
; t

]

≡ eF [u, v; t] , (9)

where u ≡ l/k, v ≡ e/k. Inserting (9) into (3) yields

dF

F
= β(u, v)

du

u
− [α(u, v) + β(u, v)]

dv

v
+ δ

dt

t − t0
; δ ≡

t − t0
F

∂F

∂t
. (10)

The cost PY of producing a given output Y (t) = Y [K, L, E; t] is obtained by mul-
tiplying the time-dependent prices per capital unit, pK(t), labor unit, pL(t), and en-
ergy unit, pE(t), by the factor quantities K, L, E required to produce that output:
PY = pKK +pLL+pEE = PKk+PLl+PEe, where PK ≡ pKK0, PL ≡ pLL0, PE ≡ pEE0.

To relate the total factor cost at time t to the output at t we rewrite it as PY =
e[PKk/e + PLl/e + PE], express e by y(t) = Y (t)/Y0 with the help of eq. (9), and obtain
the equation for the cost mountain as

PY =
Y (t)

Y0F [u, v; t]

[

PK

1

v
+ PL

u

v
+ PE

]

. (11)

The cost mountain rises above the u−v plane, its topography is determined by the prices
and ratios of the production factors, and its height scales with Y (t)/Y0.

The profit GY obtained from the output Y is GY = Y − PY . Profit maximum means
that

−GY =
Y (t)

Y0F(u, v; t)

[

PK

1

v
+ PL

u

v
+ PE

]

− Y (t) (12)

10



is minimum. Since the cost mountain and the mountain of negative profit just differ by
the height-shift Y (t), the structure of both mountains is the same.

The negative gradient, −grad ≡ −eu∂/∂u − ev∂/∂v, of −GY points in the direction
where the economy would move, if the representative entrepreneur at the controls would
only have the one objective of profit maximization; eu and ev are the unit vectors parallel
to the u-axis and the v-axis that span the u−v plane. Operating with −grad on −GY in
eq. (12) and observing that eq. (10) leads to ∂F/∂u = βF/u and ∂F/∂v = −(α+β)F/v
one obtains the gradient of profit

gradGY = −eu

∂PY

∂u
− ev

∂PY

∂v
, (13)

as the negative gradient of the cost mountain with the components

−eu

∂PY

∂u
= −eu

Y (t)

Y0F(u, v; t)

[

PL

1

v
−

β

u

(

PK

1

v
+ PL

u

v
+ PE

)

]

, (14)

−ev

∂PY

∂v
= −ev

Y (t)

Y0F(u, v; t)

[

α + β

v

(

PK

1

v
+ PL

u

v
+ PE

)

− (PK + PLu)
1

v2

]

. (15)

To compute the topography and the gradients of the cost mountain at given factor prices
one needs the output elasticities α(u, v) and β(u, v) that are appropriate for the considered
economy. Integration of eq. (3) or (10) with these elasticities yields the corresponding
production function eF(u, v; t). The method of the characteristic basis curves in the
theory of partial differential equations would facilitate the exact determination of α(u, v)
and β(u, v), if one knew them on a boundary curve and a boudary surface in k, l, e-space,
respectively. This information is not, and never will be, available. Therefore, one can
only calculate approximate output elasticities and production functions.

Well-known twice-differentiable macroeconomic production functions in three factors,
such as capital, labor, and energy, which were designed before the eqs. (3)–(9) had been
derived, are one type of approximations. Simple, and much employed, is the Cobb-Douglas
production function, whose energy-dependent version is given by

yCDE = y0

CDEkα0lβ0e1−α0−β0 = y0

CDEe

(

k

e

)α0
(

l

e

)β0

. (16)

Its output elasticities α0 and β0 are constants and satisfy the differential equations (6)
trivially. CES functions have constant elasticities of substitution; their energy-dependent
output elasticities are given in [11]. Another type of approximations are LinEx functions,
which depend linearly on energy and exponentially on the factor ratios. Their output elas-
ticities are required to satisfy asymptotic boundary conditions of the differential equations
(6). These conditions incorporate the law of diminishing returns and the approach to the
state of maximum automation [8, 11]. The simplest LinEx function is

yL1 = y0

L1
e exp

[

a

(

2 −
l + e

k

)

+ ac

(

l

e
− 1

)]

, (17)

where a, c, and y0

L1
are technology parameters; innovations may change them in time and

contribute to δ in eq. (3). The corresponding output elasticity of capital, αL1 = a(l+e)/k,
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vanishes for vanishing ratios of labor and energy to capital and thus reflects the law of
diminishing returns. The output elasticity of labor, βL1 = a (cl/e − l/k), vanishes, when
the capital stock approaches the magnitude km required for maximum automation, and
when simultaneously the energy input approaches the quantity em = ckm that is demanded
by the fully utilized capital stock km. As one can see from the growth equation (3), in this
state of maximum automation an additional unit of routine labor l does not contribute to
the growth of output any more. β also vanishes, if e → ck for any k < km. This imposes a
limit on the region of accessible factor space that results from the restriction that output
elasticities must be non-negative. The vanishing of βL1 is a necessary but not sufficient
condition for the state of maximum automation. The additional characterization of this
state is that its labor input lm is much less than km.12

To visualize the trajectory of a real-life economy on the slope of its cost mountain the
time-changing factor prices and inputs and an appropriate production function eF(u, v; t)
are needed in eqs. (11), (14), and (15). Aggregate, deflated factor prices are available for
Germany’s industrial sector “Warenproduzierendes Gewerbe” (GWG) between 1960 and
1981 from [14]. The production function should reproduce economic growth reasonably
well with small residuals and acceptable statistical quality measures. The LinEx function
(17) satisfies these criteria. The energy-dependent Cobb-Douglas function (16) also re-
produces economic growth in Germany, Japan and the USA for about two decades with
not too large residuals, albeit with considerably worse statistical quality measures than
the LinEx function, if its constant output elasticies are not chosen to be equal to the fac-
tor cost shares. Rather they, as well as the technology parameters of the LinEx function
(17), have been determined econometrically, observing the restrictions (8) of non-negative
output elasticities [8].

The cost mountain (11) that rises above the u − v plane is shaped by factor inputs,
factor costs, the production function, and the output elasticities. The projections of the
trajectory of GWG and of the cost gradients onto the u − v plane are shown in Fig. 2
(which is a modified update of Fig. 4 of [14]). For the sake of simplicity the projection is
made for the fraction of output that is equal to Y0; thus Y (t)/Y0 = 1 in eqs. (14) and (15).
The time-averaged LinEx output elasticities are about 0.45 for capital, 0.05 for labor, and
0.50 for energy and the corresponding output elasticities of the energy-dependent Cobb-
Douglas function are close to these numbers [8, 14].13

The shadow-price barrier from the constraint that capacity utilization cannot exceed
1 is given by [8, 10]

1 = η0

(

l

k

)λ (
e

k

)ν

≡ η0u
λvν , (18)

where the parameters λ, ν, and η0 have been determined by fitting the r.h.s. of eq.
(18) to the data on capacity utilization in the total German economy. These data, pub-

12A modified LinEx function yL11 = y0
L11e exp

[

a
(

1 − l

k

)

+ 1
c

(

1 − e

k

)

+ ac
(

l

e
− 1
)]

, has output elas-
ticities αL11 = al/k + e/ck, and βL11 = a (cl/e − l/k) = βL1, which satify the same asymptotic boundary
conditions as αL1 and βL1. Furthermore, because of the restrictions (8), e = ck is accessible only, and
only asymptotically, in the state km, lm << km, em = ckm of maximum automation. For em = ckm, the
growth equation (3) at fixed t, with γ = 1 − αL1(1) − βL1(1), turns into dy/y = dk/k.

13The cost gradients shown in Fig. 2 were calculated with the LinEx and Cobb-Douglas production
functions of [14], whose variables are normalized to the base year 1970. In eq. (18) and Fig. 2, the
base year is t0 = 1960. The production functions of [8], whose variables are normalized to t0 = 1960,
reproduce economic growth somewhat better than those of [14].
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lished by the “Sachverständigenrat für die Gesamtwirtschaft” are not necessarily identical
with capacity utilization in GWG, but they are the only ones available. The parameters
η0 = 1, λ = −0.152, ν = 0.386 reproduce the data satisfactorily, although the fit stays
somewhat below the maxima in 1965, 1969, and 1970. The barrier from the technological
constraint (18) is indicated by full squares in Fig. 2. A complete fit to the (non-available)
capacity utilization data for GWG would probably move it somewhat closer to the em-
pirical trajectory. The LinEx approximation indicates that the barrier from maximum
automation is in the region where v = c ≈ 1, so that βL1 = 0, and where u << 1.

We note that along all of the path the negative gradients of the cost mountain point
toward the shadow-price barrier from capacity utilization and the region of maximum
automation.
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