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Assessing Market Structures in Resource Markets - An Empirical Analysis
of the Market for Metallurgical Coal using Various Equilibrium Models

Stefan Lorenczika, Timo Pankea,∗

aInstitute of Energy Economics, University of Cologne, Vogelsanger Str. 321a, 50827 Cologne, Germany.

Abstract

The prevalent market structures found in many resource markets consist of a high concentration

on the supply side and a low demand elasticity. Market results are therefore frequently assumed

to be an outcome of strategic interaction between producers. Common models to investigate the

market outcomes and underlying market structures are games representing competitive markets,

strategic Cournot competition and Stackelberg structures taking into account a dominant player

acting first followed by one or more followers. Besides analysing a previously neglected scenario

of the latter kind, we add to the literature by expanding the application of mathematical models

by applying an Equilibrium Problem with Equilibrium Constraints (EPEC), which is used to

model multi-leader-follower games, to a spatial market. We apply our model by investigating

the prevalent market setting in the international market for metallurgical coal between 2008 and

2010, whose market structure provides arguments for a wide variety of market structures. Using

different statistical measures and comparing model with actual market outcomes, we find that two

previously neglected settings perform best: First, a setting in which the four largest metallurgical

coal exporting firms compete against each other as Stackelberg leaders, while the remainders act

as Cournot followers. Second, a setting with BHPB acting as sole Stackelberg leader.

Keywords: Applied industrial organisation, Stackelberg games (MPEC), multi-leader-follower

games (EPEC), Cournot oligopolies (MCP), resource markets

JEL classification: C61, D43, L71, Q31

1. Introduction

Many resource markets suffer from a high concentration on the supply side and a low demand

elasticity. Market results are therefore frequently assumed to be an outcome of strategic interaction

between producers. A long tradition in the economic literature exists using mathematical models to

analyse market outcomes to gain insides into the underlying market structures. Common models

∗ Corresponding author:
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are one-stage games representing competitive markets or Cournot competition. More advanced

two-stage models of the Stackelberg kind take into account a single leader followed by one or

more followers. We add to the literature by expanding the application of mathematical models

by applying an Equilibrium Problem with Equilibrium Constraints (EPEC) to a spatial market,

i.e., a set-up with multiple, geographically disperse demand and supply nodes. This model class

is used to model multi-leader-follower games. This enables us to investigate more complex market

structure that have been neglected in previous studies of resource markets. Omitting these market

structures may result in false conclusions about the prevalent state of competition.

The paper at hand investigates which market structure was prevalent in the international market

for metallurgical coal during the time period 2008 to 2010.1 The international metallurgical coal

market is particularly suited for this kind of analysis since, first, the supply side is dominated by four

large mining firms (hereafter referred to as the Big-Four), namely BHP Billiton (BHPB), Rio Tinto,

Anglo American and Xstrata. Second, metallurgical coal is an essential input factor in producing

pig iron and difficult to substitute, causing demand to be rather price inelastic. Third, in the period

under scrutiny in this paper, yearly benchmark prices were negotiated between representatives of

the Big-Four and representatives of the large Asian steel makers (Bowden, 2012). Fourth, one of

the firms of the Big-Four, BHP Billiton, is by far the largest firm in the international market for

metallurgical coal. Nonetheless, the other firms played a central role in the negotiations as well.

Consequently, a wide variety of market structures may be a plausible approximation of the actual

market setting.

Our research adds to Graham et al. (1999) and Trüby (2013) who were the first to analyse

the market for metallurgical coal. The former investigates various market settings for the year

1996, in which firms or consumers simultaneously choose quantities. In contrast, the latter’s focus

is on the time period from 2008 to 2010. Regarding the market structures, its author arrives at

the conclusion that although assuming that the Big-Four jointly acting as a Stackelberg leader

provides the best results compared to actual market outcomes, it cannot be ruled out that firms in

the market simply engaged in an oligopolistic Cournot competition. We add to the literature by

extending the scope of possible market structures under scrutiny. More specifically, we simulate one

scenario in which the Big-Four compete against each other on a first stage, i.e., choose outpute to

maximise individual profits, while the remaining firms form a Cournot fringe and act as followers.

This constitutes a multi-leader-follower game. In another scenario, BHP Billiton takes on the role

as the sole Stackelberg leader, with the rest of the Big-Four choosing quantities simultaneously with

the remaining players as followers. Thereby, we broaden the range of market structures analysed in

the field of spatial resource markets as multi-leader games have so far been omitted. As investigating

1 The terms metallurgical and coking coal are often used interchangeably in the related literature as well as through-
out this paper. Yet, this is not entirely correct since metallurgical coal includes coals (as it is the case in our data
set) that technically are thermal coals but can be used for metallurgical purposes as well, such as pulverised coal
injection (PCI).
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collusive behaviour in markets using simulation models crucially depends on an appropriate and

comprehensive market representation multi-leader games may help to expose previously overlooked

market structures. Since it is a priori not clear which is the correct demand elasticity, we run the

market simulations for a wide range of elasticities. In order to assess whether one of the market

structures is superior to the others, we compare simulated prices, trade flows and production

volumes of the Big-Four to realised market outcomes. In case of the comparison of trade flows,

different statistical measures/tests are applied as suggested by, e.g., Bushnell et al. (2008), Paulus

et al. (2011), and Hecking and Panke (2014).

This paper contributes to the literature on applied industrial organization and, more specifically,

the analysis of the international market for metallurgical coal. We expand previous studies by the

application of an Equilibrium Problem with Equilibrium Constraints (EPEC), a mathematical

program used to model multi-leader-follower settings, to a spatial market, i.e., a market with

multiple, geographically disperse supply and demand nodes. In doing so, we find that the two

additional market settings proposed in this paper provide a good fit with realised market outcomes

for the time period 2008 to 2010. In addition, by analysing production volumes and profits of the

Big-Four, we enhance the market structure analysis by providing an additional plausibility check.

We are able to show that even if simulated prices and trade flows fit well with market outcomes,

a scenario in which the Big-Four form a Cartel that acts as a Stackelberg leader is less likely since

production volumes deviate from actual production. And, more importantly, additional revenues

of the Big-Four from forming and coordinating a cartel are rather small compared to a scenario in

which all four compete against each other on a first stage. Accounting for the transaction costs

caused by the coordination of the cartel would further decrease possible benefits. Concerning the

demand elasticity, we detect that simulated prices for elasticities from -0.3 to -0.5 seem to be within

a reasonable range for most of the market structures.

Summing up our findings, one of the main advantages of simulation models is that it allows

to assess different market structure. Yet, as shown in our paper, it may be difficult to decide

on one setting that provides the best fit. Consequently, such analyses need to be accompanied

by additional analyses similar to our comparison of production volumes of the Big-Four. To be

able to further narrow down the number of potential market structures, additional data such as

firm-by-firm export volumes, which were not available for all relevant firms in our example, would

be helpful.

The remainder of this paper is structured as follows. Chapter 2 offers an overview of the relevant

literature, while the methodology is described in Chapter 3. The fourth chapter briefly describes

the numerical data used in this study. Chapter 5 is devoted to the analyses of the empirical results.

Chapter 6 concludes.
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2. Literature review

Commodity markets have often been subject to concerns regarding a too high concentration

of the supply side, with several prominent examples being markets for energy resources such as

the markets for oil, natural gas or metallurgical coal. Consequently, there has been substantial

academic research trying to assess whether companies or countries have been able to exercise

market power. In order to do so, one of two different methodological approaches – econometric

methods or simulation models – is applied. While both approaches have their respective advantages

and disadvantages2, one of the most persuasive arguments in favour of using simulation models to

assess the exercise of market power is that they are highly flexible with respect to which specific

market structure to assume or analyse. This, in principle, not only enables researchers to answer

the question whether or not market power in a specific market has been exercised, but also provides

hints as to which kind of market structure is prevalent, e.g., do firms form a cartel or is there no

explicit cooperation between the relevant firms.

Consequently, the use of mathematical programming models to analyse spatial markets has a

long tradition in economics. Enke (1951) first described the problem of a spatial market proposing

a solution method using a simple electric circuit to determine equilibrium prices and quantities in

competitive markets. Samuelson (1952) showed how the problem can be cast into a (welfare) max-

imization problem and thereafter be solved using linear programming. Together with Takayama

and Judge (1964, 1971), who extend the spatial market representation (e.g., by including monopo-

listic competition), his work is generally considered to have laid the groundwork for spatial market

analysis using mathematical programming.

Advances in the representation of markets were made during the 1980s by modelling imperfect

competition (e.g., by Nelson and McCarl, 1984; Harker, 1984, 1986). This has frequently been

done since then, e.g., for steam coal markets (Kolstad and Abbey, 1984; Haftendorn and Holz,

2010; Trüby and Paulus, 2012), natural gas markets (Boots et al., 2004; Gabriel et al., 2005; Holz

et al., 2008; Zhuang and Gabriel, 2008; Egging et al., 2010; Growitsch et al., 2013), wheat markets

(Kolstad and Burris, 1986), oil markets (Huppmann and Holz, 2012) or for the markets of coking

coal and iron ore (Hecking and Panke, 2014).

We focus our analysis on the metallurgical coal market. A recent analysis of short-term market

outcomes by Trüby (2013) indicates that the market in 2008 to 2010 may be characterised by

firms exercising market power, rejecting previous findings by Graham et al. (1999), although for a

different time period since the latter focusses on 1996.

Most of the aforementioned models have in common that decisions by all players are taken si-

multaneously. This model type can be extended to represent bi-level games, the classical example

2 For a brief overview of the various econometric approaches used in the literature and their respective advantages
and drawbacks see Germeshausen et al. (2014).
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being Stackelberg games (Stackelberg, 1952). There are several applications for this type of prob-

lem, which can be modelled as a Mathematical Problem with Equilibrium Constraints (MPEC).

MPECs are constrained optimization problems, with constraints including equilibrium constraints

(see Luo et al., 1996, for an overview of MPECs). MPECs have for instance been used to model

power markets, e.g, by Gabriel and Leuthold (2010); Wogrin et al. (2011) and natural gas markets,

e.g., by Siddiqui and Gabriel (2013). Bi-level games are, due to non-linearities, computationally

more challenging to solve in comparison to one-level games.

The single-leader Stackelberg game can be extended to a multi-leader-follower game in which

several players make decisions prior to one or more subsequent players. Any solution to this game

has to maximise leaders’ profits simultaneously taking into account the equilibrium outcome of the

second stage. This results in an Equilibrium Problem with Equilibrium Constraints (EPEC). Due

to the concatenation of several MPEC problems to one EPEC and the resulting high non-linearity,

EPECs are even more difficult to solve than MPECs. Previous EPEC models have mostly been

used to analyse electricity markets, e.g., by Barroso et al. (2006); Sauma and Oren (2007); Yao

et al. (2008); Shanbhag et al. (2011) and Wogrin et al. (2013). Lorenczik et al. (2014) analyse

investment decisions in the metallurgical coal market.

3. Methodology

3.1. Market Structures

Due to its market structure with few large producers and relatively low elasticity of demand,

the metallurgical coal market is under suspicion of not being competitive. This suspicion was sub-

stantiated by a recent study showing that market outcomes can be reproduced rather by assuming

strategic than competitive behaviour. Trüby (2013) found that in the years 2008 to 2010, assuming

perfect competition, neither trade flows nor prices match well with actual market results. In con-

trast, the non-competitive market structures considered in the paper perform reasonably well with

the exception of the Cournot Cartel case.3 The paper’s conclusion regarding the market structures

is that, although assuming that the Big-Four jointly acting as a Stackelberg leader provides the

best results compared to actual market outcomes, it cannot be ruled out that firms in the market

simply engaged in an oligopolistic Cournot competition. Therefore, two of the scenarios analysed in

Trüby (2013), namely the case of Cournot competition (hereafter, referred to as MCP, which is the

programming approach used to simulate the market setting) and a setting in which the Big-Four

form a cartel that acts as the Stackelberg leader (MPEC Cartel) are taken into consideration in

this paper as well to be in line with the methodology used in the corresponding literature.

3 In the Cournot Cartel case, the Big-Four are assumed to engage in a cartel and, thus, jointly optimise their total
supply. Trüby (2013) found that under this market setting prices could only be reproduced when assuming very
high elasticities. Concerning trade flows, the linear hypothesis tests suggest that simulated trade flows did not
resemble actual market outcomes in 2009 for all elasticities, while in the other years the H0-hypothesis could be
rejected for elasticities up to -0.2 (2008) and -0.3 (2010).
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However, we expand the range of investigated market structures by analysing a multi-leader-

follower game as well as one additional market setting involving one Stackelberg leader. In the

multi-leader-follower game the Big-Four compete against each other on the first stage and take

into account the reaction of the other firms engaging in Cournot competition on the second stage

(EPEC Big 4). We reason that this setting is interesting since, first, benefits in terms of additional

revenues from forming a cartel are rather small when compared to the EPEC Big 4 scenario even

without accounting for the transaction costs that go along with coordinating a cartel. Second, in

the MPEC Cartel scenario simulated production volumes by the Big-Four do not match historic

production volumes as well as the two additional settings proposed in this paper. Both reasons

will be discussed in depth in Section 5.3.

Finally, we simulate an additional single Stackelberg leader setting in which BHP Billiton sets

quantities in a first stage with the remaining firms being followers (MPEC BHBP). The main reason

that modelling such a market structure is intuitive is the fact that BHBP is by far the world’s most

important coking coal miner. Figure 1 provides an overview of the market structures investigated

in this paper.

EPEC Big 4

MPEC BHPB

MPEC Cartel

MCP

first stage second stage

BHP, Rio, Anglo, Xstrata others +

Big 4* others +

BHP Rio, Anglo, Xstrata, others +

BHP, Rio, Anglo, Xstrata, others +

* corresponding exporters form a cartel; + players not belonging to the “Big4“, but individually maximize profits

Figure 1: Overview of modelled market structures

To simulate the aforementioned different coking coal market settings, three different types

of simulation models are used. The first calculates the expected market outcome in a Cournot

oligopoly where all players decide simultaneously about produced and shipped quantities. The

two other models constitute bi-level games in which players act in consecutive order. In the

Stackelberg game one player (or a group of players forming a cartel) acts first followed by the

remaining players. The last model type represents a market with multiple (Stackelberg) leaders

and one or more followers. From a modelling perspective, the first model constitutes a Mixed

Complementary Problem (MCP). The second and third models are implemented as a Mathematical

Problem with Equilibrium Constraints (MPEC) and an Equilibrium Problem with Equilibrium

Constraints (EPEC), respectively.
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3.2. Model descriptions

Although we focus our analysis on the coking coal market the model is suitable for a multitude

of similar commodity markets like the iron ore, copper ore, oil or gas market which are characterised

by a high concentration on the supply side and therefore may not be competitive. Thus we will use

general terms for the model description and notation to emphasise the applicability of our approach

to other than the coking coal market. Table 1 summarises the most relevant nomenclature used

throughout this section, i.e., displays the abbreviations used for the various model sets, parameters

and variables and describes what they stand for. Additional symbols are explained where necessary.

Table 1: Model sets, parameters and variables

Abbreviation Description

Model sets
i ∈ I Players
j ∈ J Markets
m ∈M Production facilities
Model parameters
aj Reservation price [per unit]
bj Linear slope of demand function
cm Variable production costs [per unit]
capm Production capacity [units per year]
tci,j Transportation costs [per unit]
Model variables
Pj Market price [per unit]
si,j Supply [units]
xm Production [units]

3.2.1. The MCP model

The first model assumes a market in which all producers decide simultaneously about utilisation

of production facilities and the delivery of goods. Each player i ∈ I maximises profits according

to:

max
xm,si,j :m∈Mi

∑
j

Pj · si,j −
∑
j∈J

tci,j · si,j −
∑
m∈Mi

cm · xm

subject to

capm − xm ≥ 0, ∀m ∈Mi (λm)∑
m∈Mi

xm −
∑
j

si,j ≥ 0 (µi)

Pj = aj − bj · (si,j + S−i,j), ∀j

si,j ≥ 0, ∀j

xm ≥ 0, ∀m ∈Mi
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Total supplied quantities S−i,j (=
∑
−i 6=i s−i,j) to market j by other producers (−i) are taken

as given. Hence, each producer maximises revenues minus costs (production plus transportation)

taking into account capacity restrictions (with λm being the dual variable for the capacity limit)

and the restriction that total production has to be greater than total supply (with µi as the

respective dual variable). As all production facilities of each player are located in the same area,

transportations costs to specific demand nodes are assumed to be identical. Since different years are

not interlinked, they can be optimised separately. Maximising each players’ profits is equivalent

to finding a solution that satisfies the following related Karush-Kuhn-Tucker (KKT) conditions

simultaneously for all players:

0 ≤ tci,j − Pj + bj · si,j + µi ⊥ si,j ≥ 0, ∀ i, j

0 ≤ cm + λm − µi ⊥ xm ≥ 0, ∀ m ∈Mi

0 ≤ capm − xm ⊥ λm ≥ 0, ∀ m

0 ≤
∑
m∈Mi

xm −
∑
j

si,j ⊥ µi ≥ 0, ∀ i

Pj = aj − bj · (si,j + S−i,j), ∀ j

si,j ≥ 0, ∀ i, j

xm ≥ 0, ∀ m,

with the perp operator (⊥) meaning that the product of the expressions to the left and to the

right has to equal zero. The first inequality reflects the first order condition for the optimal

supply of player i to region j: marginal revenues of additional supply (i.e., market price P minus

transportation costs tc and the marginal costs of supply µ) have to equal supply times the slope

of the linear demand function b, i.e., the reduction of revenue due to the negative price effect of

additional supply. The second inequality, which represents the first order condition for production,

reflects the marginal costs of supply µ as the sum of variable production costs c and the scarcity

value of capacity λ. The third and fourth conditions represent the complementarity conditions

forcing production to be within the capacity limit (with λ being the scarcity value of capacity) and

production to meet supply (with marginal production costs µ). The equality condition constitutes

the linear demand function followed by non-negativity constraints for supply and production.

Due to the quasi concave objective function and the convexity of restrictions the solution is

unique and the KKT conditions are necessary and sufficient.

3.2.2. The MPEC model

In the MPEC model, representing a Stackelberg market structure with one leader (l) taking

into account the equilibrium decisions of the follower(s), model equations are as follows:
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max
xm,sl,j ,λm,µi

∑
j

Pj · sl,j −
∑
j∈J

tcl,j · sl,j −
∑
m∈Ml

cm · xm

subject to

0 ≤ tci,j − Pj + bj · si,j + µi ⊥ si,j ≥ 0, ∀ i 6= l, j

0 ≤ cm + λm − µi ⊥ xm ≥ 0, ∀ m ∈Mi 6=l

0 ≤ capm − xm ⊥ λm ≥ 0, ∀ m ∈Mi 6=l

0 ≤
∑
m∈Mi

xm −
∑
j

si,j ⊥ µi ≥ 0, ∀ i 6= l

Pj = aj − bj · (S−i,j + sl,j), ∀ j

si,j ≥ 0, ∀ i, j

xm ≥ 0, ∀ m

Thus, the leader decides on supply taking the equilibrium outcome of the second stage (which

influences the market price) into account. The followers (−i) are taking the other followers’ as well

as the leader’s supply as given. The objective function is non-convex and thus solving the MPEC

problem in the form previously described does usually not guarantee a globally optimal solution.

Thus we transform the model into a Mixed Integer Linear Problem (MILP) that can be solved to

optimality with prevalent solvers.

There exist several approaches for linearising the existing non-linearities. Due to its simple

implementation, for the complementary constraints we follow the approach presented by Fortuny-

Amat and McCarl (1981) (for an alternative formulation see Siddiqui and Gabriel, 2013). For

instance, the non-linear constraint

0 ≤ cm − Pj + bj · si,j + λm ⊥ si,j ≥ 0

is replaced by the following linear constraints

0 ≤ cm − Pj + bj · si,j + λm ≤M · ui,j
0 ≤ si,j ≤M(1− ui,j)

with M being a large enough constant (for hints on how to determine M see Gabriel and

Leuthold, 2010).

For the remaining non-linear term in the objective function (Pj · si,j) we follow the approach

presented by Perreira (2005), using a binary expansion for the supply variable si,j . The continuous

variable is replaced by discrete variables
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si,j = ∆s

∑
k

2kbsk,i,j

where ∆s represents the step size, i.e., the precision of the linear approximation, and k the

number of steps. bsk,i,j are binary variables. The term Pj · si,j in the objective function is replaced

by Pj ·∆s
∑

k 2kzsk,i,j . In addition, the following constraints have to be included in the model

0 ≤ zsk,i,j ≤M sbsk,i,j

0 ≤ Pj − zsk,i,j ≤M s
(
1− bsk,i,j

)
The thereby formulated model constitutes a MILP that can be reliably solved to a globally

optimal solution.

3.2.3. The EPEC model

The EPEC model extends the Stackelberg game by enabling the representation of several leaders

taking actions simultaneously under consideration of the reaction of one or more followers. The

solution of an EPEC constitutes the simultaneous solution of several MPECs. Where MPECs are

already difficult to solve due to their non-linear nature, it is even more difficult to solve EPECs.

KKT conditions generally cannot be formulated for MPECs as regularity conditions are violated.

Our model is solved using a diagonalisation approach. In doing so, we reduce the solution of the

EPEC to the solution of a series of MPECs. The iterative solution steps are as follows:

1. Define starting values for the supply decisions s0l,j of all leaders l ∈ L, a convergence criterion

ε, a maximum number of iterations N and a learning rate R

2. n = 1

3. Do for all leaders

(a) Fix the supply decisions for all but the current leader

(b) Solve current leader’s MPEC problem to obtain optimal supplies snl,j , ∀j
(c) Set snl,j equal to (1−R) · sn−1l,j +R · snl,j , ∀j

4. If |snl,j − s
n−1
l,j | < ε for all producers: equilibrium found, quit

5. If n = N : failed to converge, quit

6. n = n+ 1: return to step 3

EPECs may or may not have one or multiple (pure strategy) equilibrium solutions, and only

one solution can be found per model run. In addition, if the iterations do not converge to an

equilibrium, this does not necessarily mean that no solution exists. This problem can partially

be solved using multiple initial values for the iteration process, but it cannot be guaranteed that

additional equilibria have been missed. Despite these drawbacks, diagonalisation has been used
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widely and successfully in the corresponding literature (see Gabriel et al., 2012, and the literature

cited therein).

For each EPEC setting we ran our model five times with varying start values and iteration

orders to check for multiple equilibria. Each run converged to similar results with deviations of

prices from the mean values of maximum 5%, single trade flows below 1.2 Mt and total production

per mine below 0.6 Mt. Profits of the Big-Four and the cartel groups differed to a maximum of

1%. Whether theses deviations are due to a multiplicity of (similar) equilibra or to the (lack of)

precision of the applied algorithm is not quite clear. In consideration of the almost equal results

we refrain from further analyses of the deviations.

4. Data

Modelling international commodity markets may be computational challenging due to their

spatial nature, i.e., multiple supply and demand nodes. In most empirical examples, each sup-

ply node is able to transport the commodity to each demand node giving rise to a large set of

potential trade routes. The possible routes rapidly increase with additional demand or supply

nodes. Whether a certain set of trade routes turns out to be computational challenging depends

on which market structure one would like to analyse. While solvers for Mixed Complementary

Problems such as PATH (see Dirkse and Ferris, 1995) can handle quite large systems of equations

and variables, the same setup may be intractable when formulating it as a Mathematical Problem

with Equilibrium Constraints (MPEC) or other more complex problems such as an Equilibrium

Problems with Equilibrium Constraints (EPEC) due to their high non-linearity.

Since we are particularly interested in how well a multi-leader follower game is able to model

the coking coal market we had to reduce the number of mines per player to one to keep the model

feasible.4 To ensure comparability the same data setup was used for all market structures analysed

in this paper irrespective of whether the respective solvers may have been able to handle larger sets

of equations and variables (see Appendix A for production and shipping costs as well as capacities).

In total, the model used to conduct our empirical analysis consists of twelve supply nodes and

six demand nodes. The supply side consists of individual firms as well as countries which represent

the remaining firms in the respective country. In addition to each of the four firms belonging to

the Big-Four, i.e., BHP Billiton (BHPB), Rio Tinto, Anglo American and Xstrata, eight country

supply nodes are included in the model of the international coking coal market (Table 2 shows

which countries on the supply and demand side are represented in the model). When aggregating

the data, production capacities of each mine belonging to the same firm or country were simply

added up. Concerning production costs, we used the quantity-weighted average of the individual

mines of a firm or country.

4 We would like to thank Johannes Trüby for allowing us to use his extensive mine-by-mine dataset on the interna-
tional market for metallurgical coal.

11



Table 2: Overview of firms and countries used in the model

Supply nodes Demand nodes
Countries/regions

belonging to demand node

BHP Billiton JP KR Japan and Korea
Rio Tinto CN TW China and Taiwan
Anglo American IN India
Xstrata

LAM
Latin America (mainly

Australia Brazil and Chile)
Canada EUR MED Europe and Mediterranean
China Other Africa and Middle East
Indonesia
New Zealand
Russia
South Africa
United States

The demand side is represented by six nodes, most of which represent a demand cluster with

India being the only exception. The demand clusters were chosen based on geographical proximity

and importance for international trade of metallurgical coal. Geographical proximity is important

because shipment costs, which represent a large share in total import costs, largely depend on

the shipping distance. Due to its minor importance in terms of share of total import volumes we

included Africa and Middle East into one demand node despite the large area this demand node

covers. Inverse demand functions are assumed to be linear (see Table A1 in Appendix A for the

used market data). Since, it is a priori not clear which is the right elasticity, we run the market

analyses for a range of elasticities, more specifically we consider elasticities from -0.1 to -0.6. This

is in line with Bard and Loncar (1991) who estimated the elasticity of coking coal demand to lie in

the range from -0.15 to -0.5, with Western European (Asian) demand elasticity lying in the lower

(upper) part of this range. Graham et al. (1999) finds that in 1996 a demand elasticity of -0.3

characterises best the actual market outcomes, whereas Trüby (2013) concludes that for the years

2008 to 2010 demand elasticity falls in the range from -0.3 to -0.5.

5. Results

In this section, the model results are presented and discussed. We start out by comparing prices

under the different market settings to actual market prices. This allows us to narrow down the range

of elasticities we need to focus on. In a second step, we use three statistical measures, namely a

linear regression test as suggested by Bushnell et al. (2008), Spearman’s rang correlation coefficient,

and Theil’s inequality coefficient, to assess whether trade flows simulated under different market

structures match actual trade flows. Finally, revenues and production volumes of the Big-Four are

analysed.
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5.1. Prices

Figure 2 displays the actual FOB benchmark in 2008 (straight black line) as well as the simu-

lated FOB prices for a range of elasticities (-0.1 to -0.6) and for the four market structure settings

analysed in this paper. Four observations can be made: First, for very low elasticities, i.e., between

-0.1 and -0.2, none of the market settings is able to reproduce actual market prices. Although only

the results for 2008 are displayed in Figure 2, taking a look at the other years (see Figure C1 in

Appendix C) confirms this conclusion.
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Figure 2: FOB Prices for a range of (abs.) elasticities - model results vs. actual benchmark price

Second, prices in the multi-leader-follower setting, EPEC Big 4, as well as in the setting in which

BHP Billiton acts as a Stackelberg leader, MPEC BHPB, are more or less equivalent. This result

is caused by the interaction of three effects (our argumentation follows Daughety, 1990): First,

each firm of the followers that becomes a Stackelberg leader has the incentive to increase its output

since, now, it takes into account the optimal reaction of the remaining followers to a change in the

output of the Stackelberg leaders. Second, increasing the number of leaders, causes the output of

each (incumbent) leader to drop. This may be interpreted as the result of the intensifying Cournot

competition between the leaders. Third, the total output of the followers decreases with each firm

becoming a Stackelberg leader. In our simulations these effects seem to counterbalance each other,

which is why the two market settings, EPEC Big 4 and MPEC BHPB, result in similar market

outputs and prices.

Third, another interesting aspect is that (for low demand elasticities) prices in the case the

Big-Four form a cartel that acts as a Stackelberg leader, labelled MPEC Cartel, are below the

prices in the Cournot oligopoly (MCP).5 I.e., the output-increasing effect of becoming a leader is

stronger than the output-decreasing effect of collusion (forming the cartel). Building on Shaffer

5 For higher demand elasticities (i.e., from -0.3 on) prices of both cases are identical, given the tolerance of the
applied linearisation method.
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(1995) the intuition behind this finding can be explained by showing for the case of N identical

firms, zero marginal costs and a linear demand that the output of a cartel with k-members that

acts as a Stackelberg leader is higher than in a Cournot oligopoly for k lower than N+1
2 , but is

decreasing in k. In other words, the bigger the cartel becomes, the more dominant the output-

reducing collusion effect.6 This is also in line with the results for the case in which BHPB acts as

single leader (MPEC BHPB).

Finally, the higher the elasticity the more the simulated prices converge which can be explained

by two effects: First, with increasing elasticity total production increases as well (along with

decreasing prices). Thereby, the capacity utilization over all players increases from at minimum

79 % (MCP, eta -0.1) to around 97 % (all scenarios with eta -0.6) for 2008. This narrows the

scope for differentiation between strategic behaviour as more players produce at their capacity

limit. Second, increased price elasticity of demand itself narrows the potential for strategic choice

of production as prices react more severe to changes in output.

Consequently, we conclude that the range of elasticities may be narrowed down to the range of

-0.3 to -0.5 which is in line with previous analyses (see Section 4).

5.2. Trade flows

In a first step, we investigate whether simulated trade flows under the different market structures

match actual market outcomes by regressing the former on the latter. If the two were a perfect

match, then the estimated linear equation would have a slope of one and an intercept of zero.

Table 3 shows the p-values of the F-test that checks whether the coefficient of the slope and the

intercept jointly equal one and zero, respectively, for six different elasticities and the four market

structures.7

Taking a closer look at Table 3, we can conclude that all four market settings provide a rea-

sonable fit with actual trade flows in the relevant range of elasticities (-0.3 to -0.5). This finding

generally holds true for lower elasticities as well with one exception. In the case of the MCP

scenario, trade flows in 2008 and 2010 for an elasticity of -0.1 and in 2009 for an elasticity of -0.1

and -0.2 do not seem to provide a reasonable fit since the H0-hypothesis is rejected. It should,

however, be noted that 2009 was special in the sense that it was characterised by a significant

drop in utilisation rates of the mines since steel demand and, thus, demand for coking coal had

plummeted compared to the previous year because of the financial crisis.

6 In case of k = N , i.e., the cartel consists of all firms, N , in the market, the price in the market would equal the
price a monopolist would ask.

7 See Appendix C for more details on the methodology used in this subsection.
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Table 3: P-values of the F-tests (β0 = 0 and β1 = 1) for a range of elasticities

Elasticity
EPEC Big 4 MPEC BHPB

2008 2009 2010 2008 2009 2010

e = -0.1 0.86 0.86 0.64 0.86 0.85 0.68
e = -0.2 1.00 0.80 0.90 1.00 0.81 0.92
e = -0.3 0.92 0.57 0.98 0.92 0.57 0.99
e = -0.4 0.85 0.44 0.95 0.84 0.46 0.97
e = -0.5 0.74 0.48 0.91 0.73 0.50 0.92
e = -0.6 0.59 0.52 0.84 0.59 0.52 0.85

Elasticity
MPEC Cartel MCP

2008 2009 2010 2008 2009 2010

e = -0.1 0.79 0.76 0.70 0.08* 0.02** 0.06*
e = -0.2 1.00 0.66 0.12 0.22 0.09* 0.16
e = -0.3 0.43 0.45 0.37 0.43 0.25 0.34
e = -0.4 0.75 0.85 0.73 0.67 0.52 0.59
e = -0.5 0.78 0.49 0.92 0.77 0.73 0.81
e = -0.6 0.57 0.40 0.85 0.61 0.90 0.84

Significance levels: 1% ’***’ 5% ’**’ 10% ’*’

In order to cross-check the results from the linear hypothesis test, two additional indicators

are taken into consideration. Figure 3 depicts Spearman’s rank correlation and Theil’s inequality

coefficient for the different market settings and the whole range of elasticities in 2008.8 Both

coefficients confirm the analysis of the linear hypothesis test since neither of the two indicators

allows to discard one of the market settings when concentrating on the relevant range of elasticities.

Figure 3: Spearman’s correlation coefficients and Theil’s inequality coefficients for a range of (abs.) elasticities

5.3. Production and revenues of the Big-Four

So far the conducted analyses have not provided significant evidence that one of the market

structures investigated in this paper performs better or worse than the others. Therefore, we take

a closer look at two further aspects: revenues and production volumes of the Big-Four.

8 Conclusions remain unchanged when focussing on the other two years as may be seen in Figure C2 in Appendix
C.
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When analysing the differences in profits of the Big-Four between the various market structures

simulated in this paper, we can observe that, as expected, in the MPEC Cartel setting the Big-Four

make the largest profits. However, relative differences between the different market structures are

negligible (< 1%) as becomes obvious when comparing the bars in Figure 4.9

Thus, the conclusion that can be drawn from this comparison is that the gains of forming

and coordinating a cartel are small even when neglecting transaction costs that go along with the

coordination of the firms inside the cartel.
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Figure 4: 2008’s profits of the Big-Four in the three two-stage-games for the whole range of elasticities

Turning now to the production of the Big-Four, we compare the absolute difference in simulated

versus actual production volumes of the Big-Four cumulated over the time period investigated in

this paper (2008 to 2010). This indicator was chosen because it captures differences in the total

production volumes of the Big-Four as well as deviations of each firm’s production volumes. In

addition, we compare the sum of squared differences between actual and modelled production to

assess the structure of deviations. The resulting differences are depicted in Figure 5 for a demand

elasticity of -0.4, which is the mean value of the range of elasticities found to be relevant (see

Subsection 5.1). As can be seen in the left diagram, cumulated absolute differences to historic data

lie in the range of 8% to 17%, with the MPEC Cartel setting performing worst and the market

structures in which BHP Billiton is the sole Stackelberg leader and the case of four non-colluding

leaders perform best. Taking a closer look at the individual differences of the two settings with

the largest differences, it becomes obvious that the MCP setting performs reasonably well in 2008

and 2010 but fails to reproduce the decline in production of the Big-Four in 2009. This is also

responsible for this case’ poor performance regarding squared deviations. In contrast, in the MPEC

Cartel setting constantly overestimated the production of BHP Billiton and underestimates the one

9 The results for 2009 and 2010 are similar.
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of Rio Tinto, with the reason being that this minimizes the overall production costs of the cartel.

Concentrating on the two settings that perform best no striking patterns are observed.
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Figure 5: Cumulated absolute and squared difference in production volumes of the Big-Four to actual market
outcomes at an elasticity of -0.4

In summary, three conclusions may be drawn from our analyses: i) We are able to support pre-

vious findings concluding that the setting in which a cartel of the Big-Four acts as the Stackelberg

leader, MPEC Cartel, as well as the Cournot oligopoly setting reproduce actual trade flows and

prices well. ii) However, we also show that additional revenues from forming a cartel are rather

small and individual production volumes of the Big-Four in the cartel-setting do not match well

with actual production numbers. Thus, we argue that a market structure with a cartel of the

Big-Four that moves first is less likely than the other scenarios. iii) We find that two settings with

one or more leading firms reproduce actual trade flows and prices equally well as the cartel- as

well as the Cournot-setting and, in addition, perform better than the former two settings with

respect to the production volumes of the Big-Four. In particular, the in this paper introduced

methodology representing multi-leader-follower games scored among the best results in all tests

used in our analysis.

6. Conclusions

Previous analyses of the prevailing market structure in spatial resource markets mainly focused

on the comparison of actual market outcomes to market results under perfect competition, Cournot

competition and with a single (Stackelberg) leader. We add to these analyses by developing a model

able to represent multi-leader market structures. By applying our model to the metallurgical coal

market, which is especially suited as its market structure suggests a multitude of possible markets

structures that have been neglected partly in previous analyses, we are able to demonstrate the

practicability and usefulness of our approach.

Trüby (2013) shows that market results of the metallurgical coal market indicate non-competitive

behaviour. Actual prices and trade flows could rather be explained by Cournot competition or a

game in which the Big-Four form a cartel that acts as a single Stackelberg leader. Our results
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confirm that a Cournot oligopoly as well as a cartel consisting of the Big-Four fit well with ob-

served prices and trade flows of the metallurgical coal market from 2008 until 2010. Based on our

results, however, the same is true for two additional settings: First, a market with BHPB acting as

a Stackelberg leader and the remaining players competing afterwards in a Cournot fashion (MPEC

BHBP). Second, a multi-leader market structure where the Big-Four independently act first fol-

lowed by the remaining players (EPEC Big 4). By additionally analysing profits and comparing

the actual production data with models results we conclude that the two latter scenarios are even

more likely than the previously promoted market structures.

To improve the accuracy of current market structure analyses and to further narrow down the

set of potential market structures, it could be useful to have more detailed firm and market data

also for smaller market participants. In order to be able to solve especially the computationally

challenging non-linear bi-level games we had to aggregate our dataset. Improving available solution

methods for these problems to obtain mine-by-mine results may help to discriminate between the

goodness of fit of different model results with actual market data. However, this would require

that detailed data were available. Unfortunately, neither mine-by-mine market results nor detailed

profitability data on a firm level were available in our case.

Our results demonstrate the multiplicity of possible market structures able to explain actual

market outcomes concerning trade flows and market prices. By analysing the production data

we were able to identify the two most promising candidates for the underlying market structure.

From this finding two conclusions can be drawn: First, omitting potential scenarios can lead to

false conclusions of the prevailing market structure. This is relevant especially when it comes to

judging if market outcomes may reflect collusive behaviour. Second, a market structure analysis

solely based on market outcomes concerning price and trade flows may not be sufficient to decide

on the actual market structure but has to be completed by additional analyses.
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Appendix A Input data

Table A1: Reference demand [Mt] and price [US$/t]

2008 2009 2010

demand price demand price demand price
JP KR 80 300 71 129 87 227
CN TW 10 300 26 129 42 227
IN 26 300 26 129 35 227
LAM 16 300 15 129 17 227
EUR MED 63 300 43 129 58 227
Other 18 300 10 129 7 227

Table A2: Production costs [US$/t]

2008 2009 2010

Australia 67 71 73
Canada 100 101 104
China 91 114 117
Indonesia 110 112 113
New Zealand 72 73 75
Russia 162 163 156
South Africa 51 52 53
USA 117 108 113
Anglo American 67 69 70
BHP Billiton 76 77 80
Rio Tinto 78 79 82
Xstrata 63 65 67
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Table A3: Production capacities [Mtpa]

2008 2009 2010

Australia 37.4 34.4 42.6
Canada 25.6 28.0 28.0
China 4.0 2.1 2.1
Indonesia 2.1 2.1 2.5
New Zealand 2.6 2.6 2.6
Russia 15.2 15.5 15.5
South Africa 0.8 0.8 0.8
USA 52.2 57.2 60.2
Anglo American 15.1 15.1 16.3
BHP Billiton 63.6 63.6 71.4
Rio Tinto 15.0 15.0 16.2
Xstrata 13.2 14.5 15.0

Table A4: Shipping costs [US$/t]

CN TW EUR MED IN

2008 2009 2010 2008 2009 2010 2008 2009 2010
Australia 24.7 13.8 15.9 42.9 18.9 20.9 29.9 15.4 17.5
Canada 30.5 15.6 17.6 37.6 17.6 19.6 37.1 17.4 19.5
China 15.2 10.5 12.4 41.8 18.6 20.6 26.5 14.4 16.4
Indonesia 17.9 11.5 13.5 39.9 18.2 20.2 23.5 13.4 15.5
New Zealand 29.6 15.3 17.4 42.5 18.8 20.8 32.3 16.1 18.2
Russia 16.7 11.1 13.1 16.5 11.0 13.0 27.4 14.7 16.7
South Africa 31.6 15.9 18.0 32.7 16.2 18.3 25.1 14.0 16.0
USA 41.7 18.6 20.6 23.7 13.5 15.6 37.8 17.6 19.6

JP KR LAM Other

2008 2009 2010 2008 2009 2010 2008 2009 2010
Australia 24.8 13.9 15.9 36.2 17.2 19.2 33.7 16.5 18.5
Canada 26.4 14.4 16.4 36.4 17.2 19.3 41.2 18.5 20.5
China 15.1 10.4 12.4 42.5 18.8 20.8 32.1 16.0 18.1
Indonesia 22.2 13.0 15.0 37.7 17.6 19.6 26.9 14.5 16.6
New Zealand 29.2 15.2 17.3 32.3 16.1 18.1 36.2 17.2 19.2
Russia 12.4 9.3 11.2 33.0 16.3 18.4 27.2 14.6 16.7
South Africa 34.9 16.8 18.9 26.0 14.2 16.3 26.2 14.3 16.4
USA 39.2 18.0 20.0 27.9 14.8 16.9 36.5 17.3 19.3
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Appendix B Statistical measures10

In order to assess the accuracy of our model, we compare market outcomes, such as production,

prices and trade flows, to our model results. In comparing trade flows, we follow, for example,

Kolstad and Abbey (1984), Bushnell et al. (2008) and more recently Trüby (2013) as well as

Hecking and Panke (2014) by applying three different statistical measures: a linear hypothesis

test, the Spearman rank correlation coefficient and Theil’s inequality coefficient. In the following,

we briefly discuss the setup as well as some of the potential weakness of each of the three tests.

Starting with the linear hypothesis test, the intuition behind the test is that in case actual and

model trade flows had a perfect fit the dots in a scatter plot of the two data sets would be aligned

along a line starting at zero and having a slope equal to one. Therefore, we test model accuracy

by regressing actual trade flows At on the trade flows of our model Mt, with t representing the

trade flow between exporting country e ∈ E and importing region d ∈ D, as data on trade flows

is available only on a country level. Using ordinary least squares (OLS), we estimate the following

linear equation:

At = β0 + β1 ∗Mt + εt.

Modelled trade flows have a bad fit with actual data if the joint null hypothesis of β0 = 0 and

β1 = 1 can be rejected on typical significance levels. One of the reasons why this test is applied

in various studies is that it allows hypothesis testing, while the other two tests used in this paper

are distribution-free and thus do not allow such testing. However, there is a drawback to this test

as well, since the results of the test are very sensitive to how good the model is able to simulate

outliers. To improve the evaluation of the model accuracy regarding the trade flows we apply two

more tests.

The second test we employ is the Spearman’s rank correlation coefficient, which, as already

indicated by its name, can be used to compare the rank by volume of the trade flow t in reality

to the rank in modelled trade flows. Spearman’s rank correlation coefficient, also referred to as

Spearman’s rho, is defined as follows:

rho = 1−
T∑
t

d2t /(n
3 − n)

with di,j being the difference in the ranks of the modelled and the actual trade flows and T being

the total number of trade flows. Since Spearman’s rho is not based on a distribution hypothesis

testing is not applicable, but instead one looks for a large value of rho. However, Spearman’s rank

correlation coefficient does not tell you anything about how well the predicted trade flows compare

10 This section has already been published in Hecking and Panke (2014) which is co-authored by one of the authors
of this paper.
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volumewise to the actual trade flow volumes, since it could be equal to one despite total trade

volume being ten times higher in reality as long as the market shares of the trade flows match.

Finally, we apply the normed-version of Theil’s inequality coefficient U , which lies between 0

and 1, to analyse the differences between actual and modelled trade flows. A U of 0 indicates that

modelled trade flows perfectly match actual trade flow, while a large U hints at a large difference

between the two data sets. Theil’s inequality coefficient is defined as:

U =

√∑T
t (Mt −At)√∑T

t M
2
t +

√∑T
t A

2
t

Appendix C Prices and statistical measures for trade flows
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Figure C1: FOB Prices for a range of (abs.) elasticities - model results vs. actual benchmark price
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Statistical measures for trade flows

Figure C2: Spearman’s correlation coefficients and Theil’s inequality coefficients for a range of (abs.) elasticities
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