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When are consumers responding to electricity prices? An hourly pattern of
demand elasticity

Andreas Knaut®*, Simon Paulus®

¢ Institute of Energy Economics, University of Cologne, Vogelsanger Strasse 321a, 50827 Cologne, Germany.

Abstract

System security in electricity markets relies crucially on the interaction between demand and supply over
time. However, research on electricity markets has been mainly focusing on the supply side arguing that
demand is rather inelastic. Assuming perfectly inelastic demand might lead to delusive statements regarding
the price formation in electricity markets. In this article we quantify the short-run price elasticity of
electricity demand in the German day-ahead market and show that demand is adjusting to price movements
in the short-run. We are able to solve the simultaneity problem of demand and supply for the German
market by incorporating variable renewable electricity generation for the estimation of electricity prices in
our econometric approach. We find a daily pattern for demand elasticity on the German day-ahead market
where price-induced demand response occurs in early morning and late afternoon hours. Consequently, price
elasticity is lowest at night times and during the day. Our measured price elasticity peaks at a value of
approximately -0.13 implying that a one percent increase in price reduces demand by 0.13 percent.

Keywords: Electricity markets, Hourly price elasticity of demand, Empirical demand analysis

JEL classification: C26, L9, Q21, Q41

1. Introduction

Understanding the price elasticity of demand is important since demand adjustments based on price

movements contribute to the functioning of electricity markets. In electricity markets it is worth stressing
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Pattern of Electricity Demand in the German Day-ahead Market”. Some of the work was carried out within the UoC Emerging
Group on Energy Transition and Climate Change funded by the DFG Zukunftskonzept (ZUK 81/1). The responsibility for
the content of this publication lies solely with the authors.
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that balancing demand and supply occurs on a high temporal frequency which, not only in Germany, results
in debates on whether or not it is possible to match demand and supply at all times. An inelastic price
elasticity of demand assumption, as often argued for the short-run, would imply that the burden of balancing
electricity consumption and generation at all times rests with the supply side.

The empirical literature estimating long-run and short-run price elastictiy of demand in electricity mar-
kets is extensive. For the short-run, peer-reviewed studies have estimated the elasticity for different sectors
and time intervals. Table 1 shows that estimates of price elasticity vary from -0.02 to -0.3 depending on
the chosen approach, the country-specific data and the sector. Taylor et al. (2005), for instance, find that
short-run elasticity ranges from -0.05 to -0.26 for the industrial sector in North Carolina by using annual
data. He et al. (2011) confirm this finding whereas Bardazzi et al. (2014) measure a slightly higher elas-
ticity in terms of magnitude for the Italian industry sector. For the residential sector, numerous studies
have been performed as well (i.e. Ziramba (2008), Dergiades and Tsoulfidis (2008) and Hosoe and Akiyama
(2009)). However, little attention has been devoted to the price response of the whole market with respect
to wholesale prices. So far, this market has only been investigated by Genc (2014) and Lijesen (2007).
Whereas Genc (2014) applies a bottom-up Cournot modeling framework, Lijesen (2007) uses a regression
approach in order to quantify the price elasticity during peak hours. Genc and Lijesen conclude from their
chosen approaches that the hourly price elasticity is rather small. They furthermore argue that in peak
hours demand switching behavior of consumers barely occurs in practice.

In this article we extend the existing literature on short-run elasticity with respect to the wholesale price
in two ways. First, we usc wind gencration as an instrument variable to solve the simultancity problem of
demand and supply.! Sccond, we account for the variation in utility from clectricity consumption during
the day. Using data on load, temperature, prices and wind gencration for the German day-ahcad market in
2015, we quantify the level of price clasticity and its variation throughout the day.

Our results show that the short-run price clasticity of demand in the German clectricity market is not
perfectly inclastic. Even though our obtained short-run price clasticity of demand is generally low, consumers
still rcact to pricc movements. We stress that a price clasticity of demand with respect to the day-ahead
price is not cxplicitly showing the contribution of cach consumer group. Howecver, mecasuring the price
clasticity of demand can give a morc mecaningful understanding of the contribution of demand reactions to
system sccurity. The daily pattern of our ecstimate of price clasticity reveals some prominent peaks in the

morning and cvening, where the price clasticity of demand is highest. As expected, these hours show overall

IThe approach is similar to Bonte et al. (2015).



Source Type of model Type of data Elasticity Sector Region
Garcia-Cerrutti (2000) Dynamic random vari- Annual -0.79 to 0.01, Residential California
ables model mean -0.17
Al-Faris (2002) Dynamic  cointegration Annual, -0.04 / -0.18 Oman
and  Error  Correction 1970-1997
Model
Bjerner and Jensen (2002) Log-linear fixed effects Panel, 1983- -0.44
1996
Boisvert ot al. (2004) Generalized Leonticf Pcak: -0.05 TOU
Holtedahl and Joutz (2004) Cointegration and Error Annual, -0.15 Residential Taiwan
Correction Model 1955-1996
Reiss and White (2005) Reduced form approach Amnual | 0to-04 Residential California
1993 and 1997
Taylor et al. (2005) Generalized ~ McFadden 1994-2001 -0.26 to -0.05 Industry Duke Energy,
with nonlincar OLS and North Carolina
Seemingly Unrelated
Regression
Bushnell and Mansur (2005)  lagged residential prices -0.1 Residential San Dicgo
Error Correction Model Annual, -0.263 Residential Australia
1969-2000
Bernstein ¢t al. (2006) dynamic demand model  Pancl, 1977-  -0.24 to -0.21 Residential, Us
with lagged variables and 2004 Commercial
fixed effects 1977-1999
Rapanos and Polemis (2006) 1965-1999 -0.31 Greece
Halicioglu (2007) Bounds testing approach  1968-2005 -0.33 Turkey
to cointegration within
ARDL model
Lijesen (2007) reduced form regression -0.0014 -0.0043 Wholesale Netherlands
linear, loglinear
Dergiades  and  Tsoulfidis  Bounds testing approach  1965-2006 -1.06 Residential Us
(2008) to cointegration within
ARDL model
Ziramba (2008) Bounds testing approach  1978-2005 -0.02 Residential South Africa
to cointegration within
ARDL model
Hosoc and Akiyama (2009) OLS/Translog cost func-  1976-2006 0.09 to 0.3 Residential Japan
tion
He et al. (2011) Geuneral equilibrium anal- 2007 -0.017 to -0.019. Industry. res- China
ysis -0.293 to -0.311, idential, agri-
-0.0624 (0-0.0634  culture
Bardazzi et al. (2014) Two-stage translog model  Panel, —0.561 to -0.299 Industry Italy
2000-2005
Genc (2014) Cournot, competition Hourly -0.144 to -0.013 - Wholesale Ontario
model 2007, 2008 0.019 to -0.083

Table 1: Literature review of estimated short-run elasticity



high price levels providing incentives to consumers for a reduction of their consumption. In the morning and
evening hours, price elasticity varies between -0.08 and -0.13. Thus, we infer that demand adjustments in
these hours are to some extent beneficial for consumers. On the contrary, we measure a lower price elasticity
of demand at night times and during the day. A lower elasticity indicates less willingness of consumers to
adjust the consumption due to high or low electricity prices. This can be due to the fact that economic
activity in general is higher during daytime.

The remainder of the paper is organized as follows. Section 2 deepens the understanding of supply and
demand in electricity markets. Section 3 describes the data and presents the applied econometric approach.

Section 4 discusses the estimation results. Section 5 concludes.
2. Measuring market demand reactions based on wholesale prices

In order to specify our econometric model capturing demand reactions due to electricity wholesale price
movements, knowledge about the supply and demand functions in electricity markets is pivotal. In this
section, we therefore describe the functioning of the retail and wholesale electricity market before arguing
that demand elasticity can be estimated based on market demand being defined as aggregated demand of all
end consumer groups and wholesale electricity prices. We further specify the drivers of demand and supply
by setting up the respective functions.

2.1. The retail market for electricity

Consumers commonly sign contracts with retailers to take charge of their electricity demand. These
contracts are subject to different possible tariff schemes ranging from time-invariant pricing to real-time
pricing. Tariff structures vary depending on the consumer group and metering facilities.? Small end con-
sumers (e.g. households, businesses, or small industries) in Germany are mostly on time-invariant tariffs.
This means that the price of electricity for these consumer groups is at the same level for every hour over
the entire year. These consumers therefore have little incentive to adjust their demand in the short-run.
For larger consumers, such as big industrial companies, contracts are differently designed allowing them to
benefit from adjusting consumption in the short run.?

In Germany, the retail price that consumers pay for electricity consists of several components. The

most important component is the price for electricity generation, which is the price that generators charge

2The electricity consumption of many end consuiners is not observable over time because the metering facilities only display
the amount of electricity consumed but not during which period measurement is performed.

3 According to Bundesnctzagentur (2016), consumers can be grouped by their metering profile into customers with and
without interval metering. Only consumers with interval metering have the technical capability to be billed depending on the
time of usage. For Germany in 2014, 268 TWh were supplied to interval metered customers and 160 TWh to customers without
interval metering.



for the generation of electricity. Besides paying for the generation of electricity, end consumers also pay
for the transmission and distribution of electricity, as well as for additional taxes and levies. In Germany,
for instance the retail price consists of network charges, the renewable support levy, and taxes which are
added to the wholesale price. Some of these additional price components vary substantially depending on
the consumer group.* The differing retail prices for each consumer group lead to a total electricity demand
of all consumers that varies over the year. This aggregated demand of all end consumers is equal to the
observed load in the total electricity system.

2.2. The wholesale market for electricity

The price for electricity generation is determined in the wholesale market. In principal, the wholesale
market allows different players to place bids that eventually either result in produced quantities or demanded
quantities for a specific point in time. Participants in these markets are for example utilities, retailers, power
plant operators and large industrial consumers.

Figure la gives an exemplary overview of the five different players and their corresponding electricity
demand and supply on the wholesale market. The first two players are two different utilities, A and B. As
such, utility A and B illustrate cases for players with different generation assets while at the same time each
of them possesses different customer bases. However, for both utilities, we would expect that generation for
their own customer base depends on the marginal cost of generation. In other words, if the wholesale price
is above the marginal cost of the utility’s marginal cost of generation, the utility chooses to supply their
customer base instead of demanding quantities from the wholesale market. The next player in the market
we refer to is the retailer. As a retailer, supplying electricity is by default not an option and therefore we
expect them to demand electricity quantities only. The opposite is true for renewable and conventional
generation players. With marginal costs of zero, renewable generation players offer their production at very
low cost compared to conventional generation players where marginal costs are greater than zero and vary
depending on the generation technology.

Figure 1b horizontally aggregates all demand and supply curves from each player we identified. It
thus shows the aggregated demand and supply, as well as the realized equilibrium electricity price of 20
EUR/MWHh.

Figure 1c shows the resulting supply and demand bids by the individual players in the wholesale market.
First, players that can only supply electricity, such as renewable or conventional generators, appear in

ascending order on the supply side only. Second, retailers demand quantities and generally more, if prices

4In Germany, for example, electricity intensive industries are exempted from paying the renewable support levy.
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Figurc 1: Electricity price formation on the wholesale market

arc low. Third, playcrs that own gencration asscts and also have customers, nct their supply and demand

positions internally before submitting bids. This is the casc for utility A and B. In a sccond step, the bids

for the demand and supply side depend on the internal netting of supply and demand. In total this results

in four possible outcomes for placing bids which can be describes as follows

scll bid on the supply side for generation units that have not been internally matched and could satisfy

the demand of other participants
purchase bid on the demand side for demand that has not been internally matched

sell bid on the supply side, resulting from demand that has been matched internally but would be able
to reduce consumption if the price rises above a given threshold (see e.g. demand of utility B with 90

EUR/MWh)

purchase bid on the demand side for generation units that have internally be matched but that would

substitute their production if the price falls below their marginal costs of generation.

Whereas the first two outcomes are intuitively straightforward due to netting procedures, outcomes three

and four may seem counter intuitive at first. Due to the internal matching of supply and demand, parts

of the demand and supply curve that have been internally matched result in bids on the opposite side.
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By placing these bids, utilities can optimize their position and choose to substitute formally demanded
quantities to supplied quantities or vice versa, above or below a certain wholesale price.

The supply and demand curves in Figure 1b and lc look very different from a first glance, but both
result in the same price for electricity and lead to the same allocation of resources. Nevertheless, both
provide a very different impression of the price responsiveness of the demand side. Based on Figure 1b the
demand side can be characterized as rather price inelastic. In the example, the level of demand would not
change if prices stay within a range of 5 to 80 EUR/MWh. Figure l¢ may however lead to the misleading
conclusion that the demand side in electricity markets is rather price elastic. Within the submitted supply
and demand bids at the wholesale market it is not possible to identify separate bids that actually stem from
generators or actual consumers of electricity. It is therefore not possible to estimate the demand elasticity
of actual electricity consumers based on the curves observed in the wholesale market. In order to estimate
the demand elasticity of the actual electricity consumers it is, however, possible to combine the wholesale

equilibrium price with the total load observed.
2.3. The interaction of wholesale and retail markets

Within this article we are interested in the reaction of electricity demand to electricity prices. Because
disaggregated load data for each consumer group with the respective retail prices are not available, we focus
our attention on the interaction of total hourly demand and hourly wholesale electricity prices. Figure 2
shows the relation we are interested in for an exemplary hour. The blue line depicts the supply curve
for electricity generation. The red line is the aggregated demand curve of all consumers for electricity
consumption. Consumers pay an average retail price of p”, which is made up of the wholesale price for
electricity (p") and additional price components (c).> When we account for the effect of the additional
price components, we obtain the demand function that is observable in the wholesale market (wholesale
demand, red dashed line). The intersection of wholesale demand and wholesale supply lcads to point A and
determines the wholesale price p, as well as the quantity consumed and produced ¢¢. By inferring the
rclationship illustrated in Figurc 2 and using the wholesale price and total clectricity demand, we arc able
to cstimate the point clasticity of the red dashed demand curve.

The rclations of the demand and supply curve in clectricity markets arc only vagucly sketched in Figure 2.
In reality, demand is fluctuating over time duc to varying utility levels throughout the day. The demand for

clectricity can be regarded as a function of various inputs and the relation can be written as

5In Germany, most additional price components are added to the wholesale price independent on the price level or quantity
consumed.
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Figure 2: Supply and demand curves for one exemplary hour

¢* = f(p*, HDD, time-of-the-day) (1)

, where ¢; is the quantity consumed, p" is the wholesale price for electricity, HDD are heating degree
days capturing the seasonality within the data. HDD measure the temperature difference to a reference
temperature. The variable therefore captures the seasonal variation of electricity demand. For example,
if outside temperature is low, heating processes consume more electricity compared to warmer weather
conditions.® Furthermore, temperature has an effect on consumer habits, such that higher temperature
levels affect outside activities in a positive manner (Bessec and Fouquau, 2008). In addition, electricity
consumption depends on the time of usage. This is mainly driven by the variation of the consumer’s utility
function over the day. Additional variables determining the level of demand, such as economic activity, may
also alter demand but are assumed to be time-invariant on an hourly basis and within the considered time
span. Therefore, we abstract from including additional variables for the demand side in the short run.

Like the demand function, the supply of electricity can also be regarded as a function of multiple inputs

with the wholesale price p* being one of them. We define the supply function as:

¢ = f(p,p"r) (2)

, where ¢¢ is the quantity produced, pf“¢! is a vector of fuel prices and r is the production of variable
renewable energy.
In electricity markets, the structure of the supply side is commonly represented by the merit order curve.

It represents the marginal generation costs of all conventional (fossil) power plants. The shape of the curve

0The data in Section 4 reveals that this relation is true for Germany, however it may not be applicable to other countries.
In warmer climates also cooling degree days (CDD) determine the demand for electricity.
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mainly depends on the technologies being used for power generation and their respective fuel prices p/™.7
However, variable renewable electricity generation is becoming increasingly important within the generation
portfolio. This is particularly true for the German market region. Since renewable technologies do not rely
on fossil fuel inputs to generate electricity, their fuel costs are close to zero. Additionally, its stochastic
nature that is driven by wind speeds and solar radiation makes generation vary throughout time. We will
later make use of the stochastic nature and by using wind generation as an instrument variable within our

econometric model.

3. Empirical Framework
3.1. Data

Our data set consists of hourly data for 2015. We include hourly data for load, day-ahead-prices and
the forecast of production from variable renewables for Germany. In addition, HDD are calculated based on
hourly temperatures that we obtain from the NASA Goddard Institute for Space Studies (GISS). Summary

statistics for all variables are provided in Table 2.

Variable Mean Std. Dev.  Min. Max.  Source

Load [GWh)] 61.688 9.428 38.926 77.496 ENTSO-E

Wind Generation [GWh] 8.574 6.864 0.1563 32,529 EEX Transparency
Day-ahead price [EUR/MWHh] 35.6 11.5 -41.74  99.77 EPEX Spot
Temperature [°C] 10.4 7.9 -6.3 346 NASA MERRA
Heating degree days [K] 10.1 6.9 0 26.3 NASA MERRA

Table 2: Descriptive statistics (for weckdays, without public holidays and Christmas time)

The hourly load profile for Germany was taken from ENTSO-E. According to ENTSO-E, load is the
power consumed by the network including network losses but excluding consumption of pumped storage
and generating auxiliaries.® The load data includes all energy that is sold by German power plants to
consumers.? Load therefore is the best indicator on the level of demand in the German market area since
almost all energy sold has to be transferred through the grid to consumers. Figure 3a shows average hourly
values for weekdays in the German market area in a box plot. The plot shows significant differences in
the level for night hours (00:00-6:00, 19:00-00:00) compared to daytime. Also load peaks in the morning

(9:00-12:00) and evening hours (16:00-18:00). Especially in the evening, variation in load levels is higher

7Common power plaut types and fuels are hydro power, nuclear, lignite, coal, gas and oil.

8ENTSO-E collects the information from the four German transmission system operators (TSO) and claims that the data
covers at least 91% of the total supply. These quantitics may also be reflected in the day-ahcad price which we can not account
for.

9To a small amount load may also include energy that is sold from neighboring countries to the German market. These
trade flows impact the domestic electricity price and load. However, we expect this impact to be rather small.
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than at other times. The average load level is 62 GW and the maximum peak load is 77 GW in the early

evening hours.
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Figurc 3: Hourly data for load, clectricity price, wind and solar gencration for 2015

We obtain the hourly day-ahead price for clectricity from the Europcan Power Exchange (EPEX) which
is the major trading platform for Germany. Historically the day-ahcad price has cvolved as the most
important reference price on an hourly level in the wholesale clectricity market. The day-ahcad market run
by EPEX Spot is by far the most liquid trading possibility closc the point of physical delivery.!’ The price
is determined in a uniform price auction at noon onc day before clectricity is physically delivered. We follow
this perspective and use the day-ahead price as our reference price for clectricity generation. Although not
all clectricity is sold through the day-ahcad-auction, the price reflects the value of electricity in the respective
hours and contains all available information on demand and supply at that specific point in time. Figurc 3b

shows a box plot for the hourly day-ahcad clectricity price for each hour of the day. The average hourly

10Tn 2015 264 TWh have been traded in the day-ahead market, compared to 37 TWh traded in the continuous intraday
market (EPEX Spot, 2016).
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day-ahead electricity price is at 36 EUR/MWh over the 24 hours time interval and for weekdays (without
public holidays and Christmas time). The electricity price pattern is similar to the load pattern emphasizing
the fact that higher demand levels tend to increase prices in the day-ahead market. Especially during peak
times in the morning and evening one can observe higher standard deviations and peaking prices. Standard
deviation over all hours is around 12 EUR/MWh.

FElectricity generation from wind and solar power is taken from forecasts published on the transparency
platform by the European Energy Exchange (EEX). These forecasts result from multiple TSO data submis-
sions to the EEX. Since they are submitted one day before physical delivery, they contain all information
that is relevant for participants in the day-ahead market.!! Figure 3c and 3d show box plots for electricity
generation from wind and solar power. Due to weather dependent generation volatility, we observe a larger
amount of volatility in the hourly data. Wind generation varies steadily throughout the day with a small
increase during the day. Solar generation shows its typical daily pattern with no generation at night and
peak generation values for midday.

The level of demand does not only depend on the electricity price which in return is partially influenced
by generation from wind. We add weather as an additional parameter to our investigation of electricity
demand since the level of temperature is @ main driver for the seasonal variation of demand. We compute a
Germany wide average temperature based on the reanalysis MERRA data set provided by NASA (NASA,
2016). The hourly values are based on different grid points within Germany that are spatially averaged in
order to obtain a consistent hourly value for Germany. Based on the hourly temperature we derive HDD

that arc rclevant for the scasonal variation of demand in clectricity markets.'?
3.2. Econometric Approach

Due to the fact that the electricity price is endogenously determined by the interaction of demand
and supply, we choosc a two-stage approach to solve the simultancity problem.'® As we arc intcrested in
cstimating the demand function (1), possible instruments affecting the price but not the level of demand
have to be determined. Possible instruments can be found on the supply side in (2), where fucl prices
(pf*el) and the production of variable rencwable cnergy (r) arc considered. Although fucl prices arc onc

of the major drivers for gencration decisions, a closer look rcveals that they show little variation over the

11\We also considered taking the actual generation from renewables but reckon that the ex-ante forecasts are reflecting the
causal relationship in a better way since decisions made on the day-ahead market are based on forecast values.

12%We calculate HDDs based on a reference temperature of 20 °C.

BDurbin and Wu-Hausman test statistics show highly significant p-values. The null hypothesis tests for all variables in
scopc being exogenous. With p-values for both test of both cqual to 0,000 we rcject the null of exogencity implying that prices
and demand are endogenous.

11



year 2015 (cf. Figure .5 in the Appendix). Therefore, we exclude them from a further analysis within our
framework.

The production of variable renewable energy (r) can further be split into wind (w) and solar (s) gen-
eration. Figure 4 depicts the respective correlations of renewable generation with prices and load for each
hour interval of the day. In Figure 4a, we observe that the correlation between solar generation and load is
higher in absolute values than the correlation between wind generation and load. However, wind and solar
generation are correlated opposite in sign with load being positively correlated with wind generation and
solar generation negatively correlated with load.

Figure 4b shows the correlation between renewable generation and electricity price. Both, wind and solar
generation are negatively correlated with the electricity price, however their patterns are different throughout
the day. The correlation between wind generation and electricity price weakens over the day until 17:00
where the correlation is lowest with an absolute value of -0.45. From 17:00 on the correlation between
wind generation and price increases again. The pattern for the correlation between solar generation and
electricity price is reversed whereas the increasing correlation until 17:00 is mainly driven by an increasing

solar radiation. Based on the generally high correlation of wind and prices and at the same time low

correlation of wind and load, we choose wind generation as an instrument for the price.'4
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Figure 4: Correlations with load and prices in 2015

More formally, wind generation as a variable fulfills the two conditions (1) cov[w,p®] # 0 and (2)
cov[w, u] = 0, where w is wind generation, p* the wholesale clectricity price and g the crror term. The

first condition is needed in order to provide unbiased electricity price estimates. In our context the chosen

MGtatistically speaking, weak instruments may cause estimation bias if the correlation with the endogenous explanatory
variable (in our case pj’,) is very low.
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instrument w correlates with the electricity price (c.f. Figure 4b). From the second condition it follows that
w and p are not correlated.'® Because wind can be regarded as a stochastic variable especially throughout
the day and load inhibits strong daily patterns, both can be regarded as independent (c.f. Figure 4a). With
these two conditions fulfilled we are now able to postulate the first and second stage equations. The first

stage can be written as

Py =00+ Y00 Wit + € (3)

and the sccond stagc as

a5y = Bon + Bun Py + B2 HDDy+ B3 MONy + B4 - FRI, + jupyp. (4)

We estimate price coefficients 31, and dummy coefficients 5g ;, on an hourly basis 2. We do this, because
we expect the utility of electricity consumption to be different in each hour of the day. Here, 3y ) captures
the price independent change of utility from electricity consumption throughout the day. Since we observe
a different demand pattern for working days and week-ends, we eliminate week-ends and holidays from the
data. Furthermore, we add dummies for Monday (MON) and Friday (FRI)!S to capture differing demand
levels at the beginning and end of the working week. Based on our estimates, we can calculate the average
hourly price elasticity of electricity demand according to

€p == = Tziﬁl,h,, (5)
q, Opn Gy,

where ¢, is the hourly elasticity using the average price pj;’ and average demand g, in the respective

hour of the day (h).
4. Empirical Application

By applying the econometric framework, we are able to estimate the level of price elasticity of demand
for the German day-ahead market on an hourly basis. The regression is based on levels and elasticity is
calculated with respect to the average prices and quantities in each hour.!”

The results of the estimation can be found in Table 3. When taking a look at the price coefficients in

Table 3a, we can see that all price coeflicients are negative in sign and are significant at least at the 1% level.

L5 Testing for validity expressed by cov [w, p] = 0 within our framework is not feasible since our model is exactly identified.

16For Mondays the dummy is positive for the time between 0:00 and 9:00. For Fridays the time frame is from 17:00 to 23:00.

17In a previous version of the paper, we normalized our data to the median, which is why previous estimates differ from this
version. Furthermore, elasticity was calculated with respect to the average price and quantity level including values of zero. As
we are running a pooled regression many observations of zero were included which resulted in low estimates of the elasticity.
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We note that coefficients during morning hours (9:00-12:00) are lower in absolute values. The highest value
can be found at 17:00. In this particular hour, a wholesale price increase of 1 EUR/MWh leads to a demand
reduction of 201.8 NM\Wh. The hourly dummy coefficients in Table 3a capture the varying level of utility
throughout the day. During the day, hourly coefficients are higher than at other times. In the evening,
we can observe a peak in the level of utility, especially between 16:00 - 20:00 (c.f. Figure ba). Beside the
hourly coefficients, we also account for the influence of temperature and weekdays on electricity demand.
All coefficients are significant at the 0.1% level and can be explained in their sign. HDD have a positive sign
and thus increase electricity demand. Mondays and Fridays are negative in sign, indicating that demand is

generally lower at the start of the week and at the end compared to other working days.
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=y ©
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2 4o z
o £ -0.08
o ©
- 5 ©
I I g =0.10
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-5 -0.14
01234567 8 91011121314151617181920212223 012345678 91011121314151617181920212223
Hour of the day Hour of the day
. <001 N 5<0.02 p<0.05 N > 0.05 I »<0.01 N p<0.02 p<0.05 005
(a) Hourly dummies for the electricity demand (b) Hourly price elasticity of electricity demand

Since the focus of our work is on the hourly price elasticity of demand, we estimate the elasticity based
on the results from the basic regression. The results are displayed in Figure 5b and the numerical values
can be found in Table 3c.1®

As observed before, all coefficients are negative in sign and significant at a strict 1% level. With the
elasticity estimates at hand, we are able to plot a distinctive pattern for the hourly price elasticity of demand
for the German day-ahead market. The unique shape of the hourly price elasticity of demand pattern is
depicted above in Figure 5b. Our results show that demand reactions are rather small. However, a perfect
inelastic demand assumption can also be neglected. More precisely, the elasticity is the lowest during night

times (22:00 - 6:00). During these hours electricity demand and utility from electricity consumption is

18Tt is important to note that elasticity is calculated with respect to the wholesale price level and not the retail price level,
as represented by the dashed red demand curve in Figure 2. The clasticity with respect to retail prices would be higher. For
example if we consider the sum of additional price components (¢) to be 150 EUR/MWh, which is an average value based
on Eurostat (2016) for Germany, the highest elasticity measured would be -0.58 at hour 17:00-18:00. Without the sum of
additional price components, we obtain an elasticity of -0.13 as indicated in Table 3c.
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Hour Price Dumiy Hour Elasticity

0 -0.0847*** (-3.98) . 0 -0.0456*** (-3.96)
1 -0.0853*** (-4.18) -2.135** (-2.91) 1 -0.0451%* (-4.15)
2 -0.0781*** (-4.23) -3.429*** (-4.94) 2 -0.0394*** (-4.20)
3 -0.0960*** (-4.89) -2.816™** (-4.01) 3 -0.0467*** (-4.85)
4 -0.1150*** (-5.60) -0.8526 (-1.18) 4 -0.0561*** (-5.57)
5 -0.1298*** (-6.01) 3.714*** (4.70) 5 -0.0661*** (-5.99)
6 -0.1322°** (-4.96) 13.410*** (11.95) 6 -0.0792*** (-4.95)
7 -0.1192%** (-4.37)  20.620™ (15.14) 7 -0.0810*** (-4.36)
8 -0.0743*** (-3.55)  21.960*** (19.48) 8 -0.0501*** (-3.54)
9  -0.0452** (-2.95)  20.940*** (24.20) 9 -0.0279** (-2.95)
10 -0.0421** (-2.69) 22.230** (26.42) 10 -0.0240** (-2.68)
11 -0.0496** (-2.92)  23.720%** (27.34) 11 -0.02717 (-2.91)
12 -0.0557** (-3.01)  23.080*** (26.61) 12 -0.0283** (-3.00)
13 -0.0688*** (-3.30) 22.590*** (24.57) 13 -0.0345*** (-3.29)
14 -0.0844*** (-3.58) 21.660"** (22.02) 14 -0.0425*** (-3.57)
15 -0.1069*** (-4.02)  21.240*** (19.26) 15 -0.0566*** (-4.01)
16 -0.1486*** (-3.66) 21.630*** (13.19) 16 -0.0828*** (-3.64)
17 -0.2018** (-2.90)  24.990*** (8.15) 17 -0.1275** (-2.88)
18  -0.1349** (-2.65)  22.970*** (9.41) 18  -0.0912** (-2.64)
19  -0.1175** (-3.19)  21.410*** (11.81) 19  -0.0821** (-3.18)
20 -0.1327°% (-5.14)  18.490*** (15.26) 20 -0.0875°* (-5.12)
21 -0.1034*** (-5.68) 13.760™** (15.81) 21 -0.0640*** (-5.65)
22 -0.0890*** (-4.66) 9.565 (11.29) 22 -0.0543*** (-4.63)
23 -0.0836*** (-4.05) 4.164 (5.25) 23 -0.0456*** (-4.03)
(a) Dummy and price coefficients t statistics in parentheses
*p < 0.05, ** p < 0.01, *** p < 0.001
Coefficient (c) Elasticity

Heating degree days  0.4679*** (81.99)

Monday dummy -3.340*** (-28.08)

Friday dummy -1.997*** (-12.07)

Coustant 46.57** (84.62)

Observations 5760

R? 0.940

Adjusted R? 0.939

t statistics in parentheses
* p <0.05, ** p<0.01, *** p < 0.001

(b) Regression coefficients

Table 3: Regression results



generally lower (as we can also observe from Table 3a). The graph shows two prominent peaks of price
elasticity of demand in the morning and in the evening. At these times working hours start and end.
Possible reasons for a high elasticity of demand at those times is the shifting or delaying of consumption.
When prices are low in the morning, some processes may be able to start the operation earlier and thereby
circumventing a time with a higher electricity price level. The same might be true for the evening, when the
workday ends. Here working hours may be extended to lower price levels at other times. Throughout the
day, the price elasticity of demand remains relatively low and is less significant. At those hours, economic
activity is high and the option to shift or delay electricity consumption might not be feasible for consumers.
In other words, consumers are bound to consume electricity which results in high electricity consumption

regardless of the price level.
5. Conclusion

We estimate the hourly pattern of price elasticity of demand for the German day-ahead market, using
hourly data on load, price, generation of wind and temperature. By doing this, we are able to determine
the degree of short-run demand response within this market. To the best of our knowledge, a market-wide
hourly analysis of the price elasticity of demand has not been conducted so far.

Based on our two-stage regression approach which uses wind generation as an instrument to proxy the
electricity price, we find that hourly price elasticity of demand is not completely price inelastic. Especially
during the morning and evening demand is responding to price signals. Values for price elasticity range from
approximately -0.02 to -0.13 depending on the investigated hour. The hourly price elasticity pattern reveals
that elasticity is lowest in the night hours and around mid day. Low values for price elasticity during night
time (22:00 - 06:00) indicate that consumers are less likely to react. Around middle day economic activity
is high which may explain the low elasticity values. Price elasticity of demand is the highest in the early
morning (04:00 - 07:00) and late afternoon (16:00 - 20:00) hours, with levels between -0.08 and -0.13.

The empirical results indicate a high level of variation in the price elasticity of demand throughout
the day in the German day-ahead market. Although the hourly elasticity is low from a first glance, load
shifting accumulates over the year. The found elasticity pattern helps to understand when demand shifting
occurs and when demand may be able to contribute to system security in situations of low supply. We find
that especially during critical situations, such as peak times in the morning and evening, price elasticity of
demand is high and may contribute to a secure electricity system.

Our research sheds some light on how flexible the German electricity market has already been in 2015,
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given the underlying renewable generation of the German day-ahead market. It may also give policy makers
a starting point for evaluating the interaction of supply and demand in electricity markets. In addition to the
analysis of the day-ahead market, we reckon that further research on demand response could focus on short-
term markets, such as the intraday market. These markets are essential to the integration of large amounts
of renewable electricity because they are able to balance forecast errors of wind and solar electricity. Whereas
this additional research would gain further insights onto the short-term demand response, we argue that

currently the day-ahead market remains the most important market where demand and supply are balanced.
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Figure .5: Prices for coal, gas and co2 certificates from January to December 2015
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