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Abstract

In this study, we address a major problem in the measurement of firm performance and the regula-

tion of natural monopolies, namely the intertemporal character of long-term investment decisions.

In specific, we focus on the impact of adjustment costs of investments on estimates of firms’

technical and cost inefficiency. We apply nonparametric dynamic data envelopment analysis to

investigate the dynamic inefficiency of electricity distribution and transmission companies in the

US during the years 2004 to 2011 and compare our results with their static counterparts. Our

empirical findings reveal that ignoring long-term investments and their corresponding adjustment

costs does significantly distort both firm-specific and industrial inefficiency estimates and may thus

create misleading incentives for the regulated firms to cut investments.
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1. Introduction

Allocating the economic effects of a managerial investment decisions to certain time periods

represents an important element in everyday economic life. Most important, the effects of an

investment in capital assets have to be distributed over time for accountancy, in order to allow

stakeholders an assessment of the firm’s performance within a certain period. However, an adequate

allocation of the true economic costs and benefits of an investment over time is aggravated by the

fact that the measurable costs and benefits considered in the bookkeeping may diverge from the

actual economic costs and benefits. This phenomena is referred to as the allocation problem of

financial accounting (Thomas, 1969).

For an illustrative example of this accounting problem, consider a firm investing into a new,

more efficient, software system. In the initial period, the implementation of the new system will

cause significant adjustment costs for installation, training and reorganization that are reflected

in the firm’s operational expenditures. In contrast, the measurable economic benefits of the new

system will unfold only later in the following periods. As a consequence, the firm will appear less

profitable for investors, regulators and other stakeholders in the installation period although it

implements an investment decision that increases the performance of the company in the long run.

This work addresses a specific version of such an allocation problem in accounting, namely the

mismatch between the benchmarking methods used in the context of incentive-based regulation

schemes and the multi-period optimization behavior of the regulated firms. Current benchmarking

practice usually ignores the intertemporal linkage of investments outlined above by relying solely on

static inefficiency measures. These inefficiency measures focus on input and output data (costs or

quantities) for a certain period and do not control for adjustment costs of investments that affect the

observable combination of variable inputs and output in the respective benchmarking period. Thus,

the regulator ignores the fact that the measured inefficiency may reflect short-term adjustment costs

from investments necessary for long-run cost minimization rather than the ‘actual’ inefficiency. As

a result, firms with high investments in the benchmarking period may be worse off when compared

to peers with lower investments. In contrast, firms with low investments may operate far from the

dynamic optimum but may be deemed as fully efficient from a static perspective. This distortion
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in the outcome of static benchmarking exercises may not even be reversed in the benchmarking

process for the subsequent regulatory period since the economic lifetime of capital assets in network

assets is expected to heavily exceed the duration of one regulatory period.

Following this line of argumentation, the need for dynamic benchmarking approaches in order

to explicitly address the intertemporal character of long-term input decisions made by firms has

been widely acknowledged. However, there is only limited empirical research on the application

of dynamic inefficiency estimation in the presence of adjustment costs. Moreover, the regulatory

implications of applying dynamic rather than static inefficiency measures have not yet been ad-

dressed.

This paper seeks to fill this research gap. Using a data set of US electricity transmission and

distribution firms for the period 2004 to 2011, we assess the firms’ dynamic technical inefficiency

explicitly accounting for changes in the capital stock and their implied adjustment costs. Draw-

ing upon dynamic data envelopment analysis (DEA), we compute a dynamic directional distance

function, which enables us to analyze the dynamic technical inefficiency of our sample firms. Non-

parametric DEA is applied rather than parametric estimation techniques in order to avoid imposing

a restrictive functional form on our heterogeneous sample of firms. We use the established duality

of the dynamic directional distance function to the current value of the optimal value function of

the intertemporal cost minimization problem in order to compute the dynamic cost inefficiency

and the dynamic allocative inefficiency in an adjustment cost framework. We compare our derived

dynamic inefficiency estimates to their static counterparts, i.e., the inefficiency estimates obtained

ignoring the adjustment costs of changes in the capital stock. This allows us to assess the impact

of applying dynamic inefficiency measures on the outcome of benchmarking exercises, both on a

firm-specific and industrial level.

This study provides two main contributions to the empirical research in the field of inefficiency

measurement: First, our paper illustrates the impact of the important methodological choice of

static vs. dynamic inefficiency measures on the outcomes of benchmarking exercises frequently

carried out in regulatory practice. By doing so, we discuss the incentives implied in both method-

ologies with regard to long-term investments for the firms under regulation. Second, we provide

3



previously unknown insights into the dynamic inefficiency of the US electricity transmission and

distribution industry, explicitly controlling for the adjustment costs of investments.

Overall, our empirical findings suggest that investments in capital assets and their implicit

adjustment costs should be accounted for by the regulator in order to avoid biased firm-specific

cost saving targets and misleading incentives to cut investments. We find that the average dynamic

technical inefficiency of the US electricity transmission and distribution industry is around 26%

during the sample period. The dynamic approach yields on average lower technical inefficiency

scores than the corresponding static inefficiency estimates focusing exclusively on variable input

contraction (40%). Dynamic cost inefficiency of the industry amounts on average to 37% and is

3 percentage points lower than the corresponding static measure. On a firm-specific level, the

application of dynamic inefficiency measures has even stronger implications on the inefficiency

estimates than on an industrial level. Thus, the economic impact of biased inefficiency factors

derived from static benchmarking procedures for the firms under regulation are expected to be

severe.

The paper is structured as follows: Section 2 provides the theoretical background and Section 3

discusses relevant previous research. The methodology is outlined in Section 4. Section 5 presents

the data, while empirical results are discussed in Section 6. Section 7 concludes.

2. Theoretical Background

The need for regulation of natural monopolies in network industries such as telecommunication,

railway or energy distribution and transmission has been extensively discussed (see, e.g., Leland,

1974; Joskow, 2011). As emphasized by Jamasb and Pollitt (2007), regulatory measures applied to

these industries aim to provide incentives for an efficient operation of the regulated firms and to

ensure a sharing of productivity gains between firms and customers. Historically, ‘cost-of-service’

(rate of return) regulation has been used by regulators. Under rate of return of regulation, the

regulator sets the price which the utility can charge in such a way that the utility can cover its

operating costs and additionally is allowed to earn a specified rate of return on its capital. Although

the rate of return regulation is effective in terms of ‘rent extraction’ (Joskow, 2008), it lacks cost

reduction incentives and provides incentives to overinvest in capital. The latter shortfall is widely

4



known as the Averch-Johnson effect (Averch and Johnson, 1962).

In order to avoid the aforementioned economic inefficiencies, the seminal work of Shleifer (1985)

proposes an alternative regulatory approach that promises a more efficient outcome, based on

cost comparisons among comparable firms, the so-called ‘yardstick competition’. Incentive-based

regulatory regimes reflecting the idea of yardstick competition are nowadays common practice in

the regulation of natural monopolies, usually implemented via a price- or revenue-cap mechanism.1

As the price or revenue cap is fixed for a certain period, any cost reductions translate into additional

profit for the firms, thereby providing a strong incentive for cost-efficient behavior of the regulated

firms.

In order to determine the socially optimal price or revenue cap empirical benchmarking tech-

niques such as data envelopment analysis (DEA) or stochastic frontier analysis (SFA) are frequently

applied. These techniques measure a firm’s inefficiency relative to its peers. Firm-specific cost

saving targets, the so-called ‘X-factors’, are then derived from the benchmarking outcome. The

X-factor specifies the inefficiency decrease for a certain firm within a regulatory period required by

the regulator in order to force the firm back to the efficient frontier. It is then incorporated in the

adaption of the price or revenue cap for the next regulatory period (Joskow, 2008):

P1,i = P0,i(1 +RPI −Xi) (1)

In Equation (1), RPI denotes the inflation of input prices (rate of input price increase), Xi

denotes the firm-specific rate of inefficiency decrease, and P0,i and P1,i are the initial and the

adjusted firm-specific price or revenue caps, respectively (Joskow, 2008).

Changes in the capital stock and the corresponding costs can cause various problems when

static benchmarking models are applied to derive the X-factors within incentive-based regulation

schemes. Increases in capital costs directly transfer into measured inefficiency if total costs enter

the static benchmarking model as input data. That way, firms with high investments are penalized

by significant X-factors. To avoid misleading incentives to reduce investments, capital costs are

frequently excluded from the benchmarking model (Joskow, 2008). However, even if only opera-

1 See, e.g., Joskow (2008) for a review on incentive-based regulation in electricity networks.
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tional costs are subject to benchmarking, adjustment costs such as expenditures for reorganization,

investment support or staff training may distort the validity of static benchmarking outcomes since

these costs are reflected in the operational expenditures.

The regulatory problem arising from adjustment costs can be illustrated using a simple exam-

ple. Consider two homogeneous firms i and j subject to incentive-based regulation where static

benchmarking on operational costs is carried out at the beginning of the regulatory period. For

the upcoming regulatory period, both firms have the option to either minimize their long-run costs

by choosing a combination of contracting the variable input usage and expanding the capital stock

via investments or to focus exclusively on contracting their variable input usage, i.e., solely to

minimize their short-run costs. If, in the presence of adjustment costs, firm i decides to stick to

long-run cost minimizing behavior and therefore invests in its capital stock, it will be unable to

contract the usage of variable inputs to the same extent than firm j that exclusively focuses on

contracting variable input usage. As a consequence, firm j will be deemed as fully efficient by the

static benchmarking outcome. In contrast, firm i is classified as inefficient due to the adjustment

costs implied in the investments and reflected in the operational costs, although it sticks to the

socially optimal minimization of long-run costs. Even if the benefits of the changes in the capital

stock of firm i unfold later on, the relative disadvantage of firm i against firm j in terms of the

assigned X-factor may not be (fully) mitigated in the subsequent benchmarking, since the economic

lifetime of capital assets usually heavily exceeds the duration of one regulatory period.2

The example puts emphasis on two interesting effects: First, firms that carry out investments

consistent with long-run cost minimization may be classified as inefficient by static benchmarking

methods since they suffer from adjustment costs that translate into higher operational costs. In

contrast, firms that deviate from the long-run cost minimizing behavior by cutting investments

may be deemed as fully efficient in the static benchmarking process. Second, firms may have an

incentive to cut investments. The second effect is an immediate consequence of the first, since

firms try to avoid being classified as inefficient although they behave optimal in the sense that they

2 CEPA et al. (2010) estimate the economic lifetime of capital assets in the electricity transmission and dis-
tribution industry to vary between 10 and 140 years. The weighted average is calculated to be around 50 years
for electricity transmission and around 70 years for electricity distribution. In contrast, a typical regulatory period
within incentive-based regulation schemes comprises three to eight years (Ernst & Young, 2013).
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minimize their long-run costs.3

To sum up, the X-factors derived from static benchmarking measures are inconsistent with

long-run cost minimization in the presence of adjustment costs and may thus encourage firms to

deviate from the optimal input decision path by cutting investments. The source of this problem

is that the static benchmarking models used by regulators are based on a ‘snapshot’ combination

of input and output without taking into account the intertemporal effect of investments on ineffi-

ciency. The usage of this ‘snapshot’ without controlling for adjustment costs in static benchmarking

models makes it impossible to distinguish between ‘true’ operational inefficiency and transitory in-

efficiency caused by changes in capital assets. Thus, regulators that rely on static benchmarking

models ignore the fact that the measured inefficiency may be partly caused by investments that are

necessary for the minimization of long-run costs. The regulatory problem is illustrated in Figure 1

using the example outlined above.

Figure 1: Biased X-factor derived from static benchmarking in the presence of adjustment costs

Overcoming the bias in X-factors derived from static benchmarking results requires accounting

for the adjustment costs induced by investments in capital assets. In Section 4 we discuss a dynamic

approach to inefficiency measurement that is able to do so. Prior to that, Section 3 shortly reviews

relevant previous research concerning the impact of incentive-based regulation on the investment

activity of the regulated firms and well as the application of benchmarking within this context.

3 Beside cutting investments, firms may also have incentive to defer investments into other periods than the
benchmarking period. However, the effectiveness of this approach depends on the persistence of the adjustment costs
induced by the respective investment.
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3. Previous Research

The relationship between investment and incentive-based regulation has been intensively dis-

cussed in the literature (see, e.g., Guthrie, 2006; Kwoka, 2009). While economic theory initially

suggested that incentive-based regulation is generally associated with underinvestment, some recent

theoretical and empirical studies draw a more comprehensive picture. In particular, they indicate

that investment decisions within an incentive-based regulatory regime highly depend on the way

in which regulation is handled in practice (Vogelsang, 2010). In a study from 2009, Roques and

Savva show that a relatively high price-cap can speed up investment, while a low price cap can be

a disincentive for investment. Nagel and Rammerstorfer (2009) obtain similar results. They find

that a stringent price cap encourages firms to lower investments. Furthermore, in an empirical

application to a sample of EU energy utilities from 1997 to 2007, Cambini and Rondi (2010) show

that the investment behavior of incentive-regulated firms is negatively related to the level of the

X-factor set by the regulatory authority.

With regard to benchmarking, a number of studies deal with nonparametric approaches to

dynamic inefficiency measurement. One strand of this literature uses dynamic network DEA (Färe

and Grosskopf, 1997; Nemoto and Goto, 1999, 2003). An interesting application of this method-

ological approach on the inefficiency of European electricity transmission system operators are the

studies of Burger and Geymüller (2007) and Geymüller (2007). Simplified, within this method-

ological framework, intertemporal behavior is modeled by allowing outputs from the initial period

to be used as inputs in the following periods (Fallah-Fini et al., 2013).

Within another strand of the literature, introduced by Sengupta (1994, 1999) and Silva and

Stefanou (2003, 2007), intertemporal behavior among subsequent periods is captured via model

constraints within a dynamic formulation of the conventional DEA framework (Fallah-Fini et al.,

2013). In particular, Silva and Stefanou (2003, 2007) define an intertemporal cost minimizing prob-

lem in which the decision making unit in every time period is required to minimize its discounted

flow of costs over time.

Building on this theoretical framework, Silva and Oude Lansink (2009) and Oude Lansink and

Silva (2013) measure dynamic inefficiency in the presence of adjustment costs via a directional
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distance function approach. Moreover, they establish duality between the primal representation

of the adjustment cost production technology, the dynamic directional distance function, and the

current value of the optimal value function of the intertemporal cost minimization problem.

In this paper, we follow the approach developed by Silva and Oude Lansink (2009) and Oude

Lansink and Silva (2013) and apply dynamic DEA to a sample of US electricity distribution and

transmission companies. Furthermore, we compare the derived dynamic inefficiency measures to

their static counterparts in order to assess how the consideration of economic costs and benefits

induced by investments affects the outcome of empirical benchmarking approaches. To our knowl-

edge, this is the first paper that applies this concept of dynamic inefficiency measurement to a

sample of firms within the electricity distribution and transmission sector. Moreover, our study is

innovative in the sense that it relates an empirical application of dynamic inefficiency measures to

existing benchmarking practice in the context of incentive-based regulation schemes.

4. The Model

In this section, we present and discuss the dynamic inefficiency measurement model formulated

by Silva and Oude Lansink (2009) and Oude Lansink and Silva (2013). We review the main elements

of the model using Oude Lansink and Silva’s notation and provide some additional explanations

and economic interpretation, also with a graphical illustration.

4.1. Dynamic Technical Inefficiency and the Dynamic Directional Distance Function

To model a production technology within an adjustment cost framework, assume that y ∈ ℜ++

denotes a vector of outputs, x ∈ ℜ+ denotes a vector of variable inputs, and K ∈ ℜ++ denotes

a vector of initial capital stocks or quasi-fixed inputs that can be adjusted by a vector of gross

investments I ∈ ℜ+. Following Silva and Stefanou (2003), the input requirement set can then be

specified as:

V (y : K) = {(x, I) : (x, I) can produce y given K} , (2)

where V (y : K) represents all the combinations of variable inputs x and gross investments I

that can produce the output vector y given the initial capital stock vector K. The set V (y : K) is
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nonempty and compact and satisfies the standard properties of no free lunch, possibility of inaction

and strong disposability of variable inputs and outputs (see, e.g., Färe and Primont, 1995).

Furthermore, in order to incorporate the economic concept of adjustment costs in the production

technology, Silva and Stefanou (2003) suggest three additional properties. First, we assume negative

monotonicity of V (y : K) in I. That is,

if (x, I) ∈ V (y : K) and I ′ ≤ I, then (x, I ′) ∈ V (y : K). (3)

This property explicitly accounts for the adjustment costs within the intertemporal framework. It

states that an adjustment of quasi-fixed inputs through gross investments decreases the production

level of the outputs given a certain level of the variable inputs. Or, in other words, an increase in

the level of gross investments requires (ceteris paribus) an increase in the level of inputs to produce

the same level of outputs.

Second, we assume that a higher initial capital stock increases the level of outputs given a

certain level of the variable inputs. In other words, the same level of output can be achieved with

lower variable input given a greater capital stock. Formally,

if K ′ ≥ K, then V (y : K) ⊂ V (y,K ′). (4)

Together the properties defined in (3) and (4) reflect the trade-off within the intertemporal economic

calculus of firms regarding the optimal level of gross investments: Gross investments decrease the

current output levels through adjustment costs but increase future output levels via an increase in

the future capital stock (Silva and Stefanou, 2003; Oude Lansink and Silva, 2013).

Finally, we assume V (y : K) to be strictly convex. That is,

if (x, I) ∈ V (y : K) and (x′, I ′) ∈ V (y : K) then

(µx+ (1− µ)x′, µI + (1− µ)I ′) ∈ V (y : K) for all µ ∈ [0, 1].

(5)

This property implies increasing marginal adjustment costs and therefore is consistent with gradual

rather than one-off investment behavior.

As shown by Silva and Oude Lansink (2009), an input requirement set that satisfies these

assumptions can be represented by a dynamic directional distance function. This input-orientated
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dynamic directional distance function can be specified as:

~D(y,K, x, I; gx, gI) = max{β ∈ ℜ : (x− βgx, I + βgI) ∈ V (y : K)}, (6)

where g = (gx, gI) ∈ ℜ++ × ℜ++ and β represent the direction and proportion in which the

input combination (x, I) is scaled, respectively, to reach the boundary or frontier of the input

requirement set V (y : K). The directional distance function value β is bounded below by zero.

A value of zero identifies the observed input combination as located on the frontier and, hence,

as being technically efficient. Values greater than zero belong to input combinations within the

frontier, indicating technical inefficiency. Thus, the dynamic directional distance function is a

measure of dynamic technical inefficiency.

A graphical illustration of the relationship between dynamic technical inefficiency and the

dynamic directional distance function is provided in Figure 2. The vertical axis shows the usage of

variable input x, while the horizontal axis shows the gross investments I. The set V (y : K) is the

area of all the combinations of x and I that can produce the output vector y given the initial capital

stock vector K. Points A, B and C represent efficient production points located on the frontier of

the input requirement set, while pointD above the frontier indicates an inefficient production point.

Using the directional vector g = (x, I), the dynamic directional distance function then measures

the proportion in which the original input combination (x, I) at point D can be simultaneously

contracted in x and expanded in I to reach the efficient input combination (x − β x, I + β I) at

point C.

In contrast, from a static perspective, the input requirement set V(y:K) reduces to the line

segment 0D′ on the vertical axis since investments are neglected. Within the static framework, A′

represents the efficient variable input level of production point A, and D′ represents the inefficient

variable input level of production point D. Hence, the static directional distance function measures

the proportion in which the original variable input level at point D′ can be reduced to reach the

efficient variable input level at point A′.

As proposed by Silva and Stefanou (2003, 2007), the input-orientated dynamic directional

distance function presented in Equation (6) can be determined by dynamic DEA. Given a sample
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Figure 2: Dynamic directional distance function

of J firms with M outputs, N variable inputs and F quasi-fixed inputs, the dynamic directional

distance function ~D for each observation i is obtained by solving the following optimization problem:

~D(yi,Ki, xi, Ii; gx, gI) = max
(βi,γj)

βi

s.t.
J
∑

j=1

γjyjm ≥ yim, m = 1, . . . ,M, (i)

J
∑

j=1

γjKj
f ≤ Ki

f , f = 1, . . . , F, (ii)

J
∑

j=1

γjxjn ≤ xin − βigxn , n = 1, . . . , N, (iii)

J
∑

j=1

γjIjf ≥ I if + βigIf , f = 1, . . . , F, (iv)

γj ≥ 0, j = 1, . . . , J, (v)

(7)

where γj are intensity variables assigning a weight to each observation j when constructing the

dynamic frontier. The inequality constraints in (i)-(iv) ensure that observation i is located within

the feasible production region, while the non-negativity constraints on the intensity variables in (v)

indicate that constant returns to scale are assumed. The solution to this program, the maximum
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value of βi, shows how much the variable inputs and the gross investments of observation i can

be proportionally contracted and expanded relative to the efficient benchmark on the frontier at

given outputs and given capital stocks.

4.2. Dynamic Cost Inefficiency and the Intertemporal Cost Minimization Problem

Given that the dynamic directional distance function defined in Equation (6) is a valid represen-

tation of the input requirement set specified in Section 4.1, a firm’s intertemporal cost minimization

problem at any base period t ∈ [0,∞) can be specified as:

W (y,Kt, w, c, r, δ) = min
(x,I)

∫

∞

t

e−r(s−t)[w′x(s) + c′K(s)]ds

s.t.

K̇(s) = I(s)− δK(s),K(t) = Kt

~D(y,K, x, I; gx, gI) ≥ 0, s ∈ [t,+∞],

(8)

where W denotes the value function, y ∈ ℜ++ is a vector of outputs in the base period and

Kt ∈ ℜ++ represents a vector of initial capital stocks (Oude Lansink and Silva, 2013). The vectors

of the current input prices for the variable input vector x(s) ∈ ℜ++ and the capital stock vector

K(s) ∈ ℜ++ are represented by w ∈ ℜ++ and c ∈ ℜ++, respectively. The time-invariant discount

rate is r > 0 and δ is a diagonal matrix of depreciation rates δf > 0, f = 1, . . . , F . Finally, I

and K̇ are vectors of gross and net investments, respectively (Silva and Oude Lansink, 2009; Oude

Lansink and Silva, 2013).

The intertemporal cost minimization problem defined in Equation (8) requires a firm to min-

imize the discounted flow of cost over time subject to two restrictions that have to hold in every

time period s. The first restriction states that a change in a quasi-fixed factor can only be achieved

via investments (disinvestments) and is therefore accompanied by adjustment costs. The second

restriction requires the combination of variable inputs and investments to be located within the

input requirement set V (y : K).

To derive the combination of variable inputs and gross investments that leads to the current

value of the optimal value function within a certain period, the Hamilton-Jacobi-Bellmann (H-J-B)

equation can be applied. Oude Lansink and Silva (2013) show that the H-J-B equation for the
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intertemporal cost minimization problem in Equation (8) can be written as:

rW (y,K,w, c) = min
(x,I)

{

w′x+ c′K +W ′

K(I − δK) : ~D(y,K, x, I; gx, gI) ≥ 0
}

, (9)

where W ′

K = WK(y,K,w, c)′ is the vector of shadow values of the quasi-fixed factors. The long-

run savings implied in investments are explicitly incorporated in the H-J-B equation as the shadow

value WKf
of the quasi-fixed factor f measures the decrease in the long-run costs if the initial

capital stock Kf is increased by a marginal unit.4

Just as the dynamic directional distance function, Equation (9) can be represented by a dynamic

DEA model. The corresponding optimization problem for a sample of J firms with M outputs, N

variable inputs and F quasi-fixed inputs is given by:

rW (yi,Ki, wi, ci) = min
(x,I,γj)

[wi′x+ ci′Ki +W i′
K(I − δKi)]

s.t.
J
∑

j=1

γjyjm ≥ yim, m = 1, . . . ,M, (i)

J
∑

j=1

γjKj
f ≤ Ki

f , f = 1, . . . , F, (ii)

J
∑

j=1

γjxjn ≤ xn, n = 1, . . . , N, (iii)

J
∑

j=1

γjIjf ≥ If , f = 1, . . . , F, (iv)

γj ≥ 0, j = 1, . . . , J, (v)

xn ≥ 0, n = 1, . . . , N, (vi)

If ≥ 0, f = 1, . . . , F, (vii)

(10)

where W i′
K represents a vector of firm-specific shadow values of the quasi-fixed factors. The in-

equality constraints (i)-(v) have the same interpretation as in Equation (7). The constraints in (vi)

4 Obtaining reliable estimates for the shadow values of the quasi-fixed factors is methodologically challenging. This
is because each shadow value represents a scarcity indicator for the respective quasi-fixed factor and thus depends
on the initial capital stock vector, output quantities and input prices. This endogeneity calls for a simultaneous
determination of optimal firm-specific input quantities and the firm-specific shadow values of the quasi-fixed factors
(Oude Lansink and Silva, 2013). However, a simultaneous determination translates into a nonlinear problem with
severe numerical difficulties. For this reason, we use an alternative sequential approach to determine the shadow
value of the quasi-fixed factor within our empirical application (see Section (6)).
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and (vii) ensure the non-negativity of variable inputs and gross investments.

By using duality theory, Silva and Oude Lansink (2009) and Oude Lansink and Silva (2013)

show that a firm-specific dynamic cost inefficiency (CIE) measure can be derived from the solution

of Equation (10) as follows:

CIE =
w′x+ c′K +W ′

K(I − δK)− rW (y,K,w, c)

w′gx −W ′

KgI
≥ ~D(y,K, x, I; gx, gI). (11)

That is, firm-specific CIE is the deviation of the observed total shadow cost of the actual input

choices from the minimum total shadow cost of the optimal input choices, divided by w′gx −W ′

KgI

to construct a unit-free measure.5 The right-hand side of Equation (11) denotes the firm-specific

dynamic technical inefficiency (TIE) represented by the dynamic directional distance function.

As a consequence, the difference between CIE and ~D(y,K, x, I; gx, gI) yields a measure for firm-

specific dynamic allocative inefficiency (AIE ≥ 0). The obtained dynamic allocative inefficiency

scores provide an indication whether the trade-off between variable input contraction and capital

stock extension is optimal in terms of long-run cost minimization.

The relationship between dynamic TIE, CIE and AIE is illustrated in Figure (3). As in Fig-

ure (2), points A, B and C denote technically efficient production points located on the frontier of

the input requirement set V (y : K), while point D above the frontier indicates an technically inef-

ficient production point. The distance between D and C measures the dynamic TIE of production

point D.

Further, in order to illustrate dynamic CIE, an isocost line ISA is mappeds. The slope of the

isocost line is given by the negative ratio of the shadow value of the quasi-fixed factor WK and the

price of the variable input w: −WK/w, with WK < 0. Thus, the slope represents the ratio of the

savings obtained from variable input contraction and from investing in the capital stock. Isocost

lines with higher intercepts represent higher long-run costs. Consequently, only point A, at which

the frontier is a tangent to the isocost line ISA represents a dynamic cost efficient production

point. Points B and C denote technically efficient but allocatively inefficient production points

with higher costs. Within the illustration, B and C should invest less and focus more on variable

5 For a detailed discussion on the duality between the dynamic directional distance function and the current value
of the optimal value function of the intertemporal cost minimization problem see Oude Lansink and Silva (2013).
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Figure 3: Dynamic TIE, CIE and AIE

input contraction given the relationship between shadow value of capital and price of the variable

input. Point D, in contrast, suffers from both technical and allocative dynamic inefficiency.

5. Data for Empirical Application

We apply the methodology outlined and discussed in Section 4 to a sample of firms within the

electricity sector. The sample comprises US electricity transmission and distribution companies

for the period 2004-2011. The data is obtained from the FERC Form No.1. After correcting

for outliers and eliminating all firms with missing observations during the period considered, the

sample consists of an unbalanced panel of 61 firms covering 8 years with 464 observations in total.

Table 1 presents descriptive statistics on the model variables. The choice of output variables

for electricity transmission and distribution firms is not straightforward. Different measures, such

as peak load of the system, network length, number of customers and total electricity delivered

are summarized in Jamasb and Pollitt (2001). In this study, we argue that the total number of

customers (aggregated over all segments) and the total electricity flow through the network most

appropriately reflect the economic output of our sample firms. We choose two outputs rather than

one to account for the heterogeneity of our sample, comprising firms with a different focus on either
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distribution or transmission of electricity.

Table 1: Descriptive statistics

Variable Mean Std. Dev. Minimum Maximum

Total Number of Customers (in millions) 1.05 1.07 0.12 5.25

Total Flow of Electricity (in MWh) 33.88 28.19 1.37 122.51

OPEX (in million 2002 US$) 136.12 139.54 15.34 645.16

Capital Stock (in billion 2002 US$) 3.19 3.37 0.27 20.24

Gross Investments (in billion 2002 US$) 0.27 0.33 0.01 2.01

Labor Cost Index 1.21 0.16 0.88 1.70

Producer Price Index 1.22 0.15 0.96 1.64

Consumer Price Index 1.16 0.06 1.05 1.25

Notes: Information on the components used to compute the figures presented as well as their FERC Form
No.1 definitions can be found in the Appendix.

We select the operational expenditure (OPEX) as the variable input. To adjust the variable

input expenses for changes in input prices, we deflate OPEX using a weighted average of a labor

cost index for the electricity transmission and distribution industry on the state level (LCI)6 and

the producer price index for the electricity transmission and distribution industry (PPI)7. The

quasi-fixed input, i.e., the capital stock, is approximated by the balance-sheet value of the network

assets. The capital stock is deflated by the PPI. Gross investments are computed by taking the

sum of net investments (changes in the deflated capital stock) and the deflated depreciation on

these assets in the respective year. For the computation of dynamic cost inefficiency and dynamic

allocative inefficiency, we use the same deflators outlined above as an approximation for the price

of the variable input and the price of capital. However, in order to generate real monetary values,

we adjust both input prices for inflation using the consumer price index (CPI).8 Finally, capital

expenditure (Capex) is given by the sum of deflated annual depreciation and an annual return on

the balance-sheet value of the network assets. Following Nillesen and Pollitt (2010), we assume a

rate of return for all assets of 6 percent.

6 The index is calculated from the average annual pay data obtained from the Quarterly Census of Employment
and Wages which is published by the Bureau of Labor Statistics: http://www.bls.gov/cew/cewind.htm#year=

2010&qtr=1&own=5&ind=10&size=0.
7 Obtained from the Bureau of Labor Statistics: http://data.bls.gov/timeseries/PCU221122221122.
8 Obtained from the Bureau of Labor Statistics: http://www.bls.gov/cpi/data.htm.
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6. Empirical Results

This section presents and interprets the results of applying the dynamic inefficiency measures

outlined in Section 4 to our sample of US electricity distribution and transmission firms. The

derived average inefficiency values per year are reported in Table 2.

Table 2: Average Dynamic and Static Inefficiency Scores

Year TIE Dynamic CIE Dynamic AIE dynamic TIE/CIE static

2004 0.29 0.44 0.15 0.42

2005 0.29 0.37 0.08 0.42

2006 0.26 0.36 0.10 0.41

2007 0.28 0.38 0.10 0.43

2008 0.26 0.39 0.13 0.33

2009 0.29 0.37 0.08 0.41

2010 0.25 0.33 0.08 0.45

2011 0.19 0.30 0.11 0.36

Mean 0.26 0.37 0.10 0.40

The average dynamic technical inefficiency (TIE) of our sample firms ranges between 19% and

29% for the years considered. On average, industrial dynamic technical inefficiency amounts to

26%, indicating that there is substantial potential for the industry to move towards the dynamic

technical efficiency frontier by simultaneously contracting variable input usage and expanding gross

investments.

We compare and contrast our dynamic technical inefficiency estimates with their static coun-

terparts to assess the impact of considering changes in the quasi-fixed inputs in the benchmarking

process. For this purpose, static technical inefficiency is computed for our sample firms, applying

DEA to a restricted version of the linear program stated in Equation (7). In this specification,

the investment (iv) and capital (ii) constraints are ignored and the directional vector is set to

g = (x, 0). Thus, the efficient static frontier can be achieved by exclusively contracting variable in-

put usage, disregarding changes in the quasi-fixed input. The resulting static benchmarking model

is in line with regulatory practice, where the focus frequently lies on benchmarking operational

costs.

The average static technical inefficiency values per year are also reported in Table 2. The average
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technical inefficiency of our sample firms is higher when applying the static measure compared to

the dynamic approach. This finding is intuitive, as the dynamic approach to technical inefficiency

allows for an additional dimension in the benchmarking process (namely the expansion of gross

investments) besides the contraction of variable inputs. On average, dynamic technical inefficiency

is around 14 percentage points below the static technical inefficiency. This finding emphasizes that

the assessment of the industrial technical inefficiency is significantly altered when adjustments of

quasi-fixed inputs via investments are accounted for. The differences in the distribution of technical

inefficiency scores between the static and the dynamic approach are illustrated in Figure 4 using

kernel density estimates. Clearly, the mean of the dynamic technical inefficiency distribution is

smaller than the corresponding static value. Moreover, applying the dynamic measure results in

a larger number of fully technically efficient observations, while the number of observations with

very high dynamic technical inefficiency scores is rather low.
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Figure 4: Distribution of Dynamic and Static Technical Inefficiency

Notes: Kernel density estimate based on an Epanechnikov kernel

For the assessment of dynamic cost and allocative inefficiencies we first approximate the firm-

specific long-run cost savings induced by a marginal increase in the capital stock by estimating
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a quadratic dynamic cost function. Differentiating this function with respect to the capital stock

yields firm-specific shadow values of capital.9 Subsequently, in a second step, these values are

incorporated in the dynamic DEA model as described in Equation 10. We rely on this sequential

approach in order to circumvent the numerical problems implied in a simultaneous determination

of optimal firm-specific input quantities and firm-specific shadow values of capital. In addition, the

sequential parametric approach avoids imposing the unrealistic assumption of dynamic allocative

efficiency that is inherent in an alternative sequential nonparametric approach. The median of the

estimated shadow values of capital is about −0.21, suggesting that one additional monetary unit

of capital leads to long-run costs savings of about 0.21 monetary units on average.

We find that the dynamic cost inefficiency (CIE) of our sample firms is considerably large with

an average dynamic cost inefficiency of our sample firms of 37%.10 This finding indicates notable

potential for savings in long-run costs for the US electricity distribution and transmission industry.

The significant level of allocative inefficiency (AIE) in most of the sample years suggests that firms

may face problems when choosing the mixture of variable and quasi-fixed input given the respective

input prices. This means that their trade-off between variable input contraction and capital stock

expansion is not in line with the ratio of variable input price and the shadow value of capital, i.e.,

the economic benefits of both choices.

Comparing dynamic and static cost inefficiency in our empirical application is aggravated by

the fact that the dynamic cost inefficiency incorporates allocative inefficiency, while the static

cost inefficiency does not.11 The application of the dynamic cost inefficiency measure yields an

average cost inefficiency that is 3 percentage points lower compared to the static measure. In

particular, more observations are deemed to be fully cost-efficient when the dynamic input and

the shadow value of capital are controlled for (see Table 2 and Figure 4). Thus, considering

adjustment costs and long-run costs savings induced by investments does affect the outcome of

9A detailed description of the parametric approximation of the firm-specific shadow values of capital is provided
in the Appendix.

10 For a limited number of observations, we find dynamic cost inefficiency values greater than one. This is the
case when actual and optimal investments show a huge difference. Considering these observations as extreme cases
we denote them as outliers and do not include them in our further analysis.

11 Since we use only one variable input measured in monetary terms (OPEX) in our empirical application, the
obtained results on the static technical inefficiency can also be interpreted as a static cost inefficiency measure, i.e.,
inefficiency due to over-usage in cost.
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cost inefficiency measurement, although the effect is not very pronounced in our application.With

regard to benchmarking carried out in regulatory practice, this suggests that X-factors derived

from static benchmarking models may deviate from long-run cost minimization targets of the firms

under regulation.

The methodological choice of applying either static or dynamic inefficiency measures is expected

to most severely affect firms with large investments due to the fact that these firms may face high

adjustment costs through changes in the capital stock. Thus, we find it promising to analyze the

inefficiency scores obtained from static and dynamic measures for firms with different investment

activity. For this purpose, we sort our observations according to their investment shares, defined as

the ratio of gross investments and capital stock, and compare the static and dynamic inefficiency

scores of different percentiles. The average inefficiency scores for the percentiles considered are

reported in Table 3.

Table 3: Average Dynamic and Static Inefficiency Scores for Investment Ratio Percentiles

Cumulative Percentile
of Investment Ratio

Observations TIE Dynamic CIE Dynamic AIE Dynamic
TIE/CIE
Static

Total Sample 464 0.26 0.37 0.11 0.40

5 441 0.25 0.36 0.11 0.40

25 348 0.22 0.33 0.11 0.39

50 232 0.21 0.33 0.12 0.41

75 116 0.17 0.28 0.11 0.44

95 24 0.07 0.20 0.13 0.44

The comparison reveals that firms with high investment ratios suffer heavily from the negligence

of investment when technical inefficiency is assessed. While the static inefficiency values differ only

slightly among the different percentiles, the dynamic technical and dynamic cost inefficiency values

show a significant variation. For instance, dynamic average technical inefficiency of the upper

investment ratio quartile is 27 percentage points lower than its static counterpart. For the case of

the upper fifth percentile, the difference in technical inefficiency between the dynamic and static

measure even increases to 37 percentage points. In contrast, firms with small investment shares

are less exposed to the choice of the technical inefficiency measure. With regard to cost inefficiency
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a similar pattern arises. For the case of the upper fifth percentile, the difference in cost inefficiency

between the dynamic and static measure amounts to 24 percentage points, while for the total

sample the difference is only 3 percentage points.

7. Conclusion

The objective of this study was to investigate the impact of using static vs. dynamic inefficiency

measures in the context of benchmarking used for incentive-based regulation schemes. We therefore

applied the concept of dynamic inefficiency developed by Silva and Oude Lansink (2009) and Oude

Lansink and Silva (2013) to a sample of US electricity distribution and transmission firms in order

to obtain dynamic technical and dynamic cost inefficiency estimated using dynamic DEA. We then

compared our dynamic inefficiency estimated with their static counterparts .

Most important, our empirical results reveal that the consideration of investments and the

corresponding adjustment costs significantly affects the outcome of benchmarking exercises, both

in terms of technical and cost inefficiency. In specific, firms with large investments are heavily

vulnerable to the choice of the inefficiency measure underlying the benchmarking process and

suffer from too strict X-factors when static benchmarking models are applied by the regulator. As

a result, firms subject to X-factors derived from static benchmarking models may have incentives

to deviate from the long-run cost minimization by cutting investments.

This finding emphasizes that the application of dynamic inefficiency measures in the context of

incentive-based regulation seems beneficial. Dynamic inefficiency measures have the advantage that

they are consistent with the multi-period optimization of firms and explicitly address adjustment

costs from changes in quasi-fixed inputs. Thus, X-factors derived from dynamic benchmarking

models can resolve the mismatch between benchmarking methods used in regulation and the op-

timization of firms with regard to the time horizon of decision making. Moreover, the dynamic

approach allows for a comparison of the optimal and the actual mix of static and dynamic factor

usage via estimating dynamic allocative inefficiency. This enables the regulator to shift incentives

in the regulatory design towards the desired direction.

In addition, our empirical findings point towards a significant potential for long-run cost savings
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for the US electricity distribution and transmission industry. The computation of the dynamic

directional distance function reveals an average dynamic technical inefficiency of 26%, while average

dynamic cost inefficiency amounts to 37%. The rather high level of dynamic inefficiency may be

attributed to a lack of efficient regulation within the industry considered. For instance, incentive-

based regulation of electricity transmision and distribution firms is not in place in many states in

the US (Kwoka, 2009). However, when interpreting the results of our inefficiency measures, one

should keep in mind that our sample firms are rather heterogeneous. We therefore recommend a

cautious interpretation of the inefficiency scores obtained.

Our study has generated valuable insights into the application of static and dynamic measures

of inefficiency and the implicit consequences on derived X-factors in incentive-based regulatory

schemes. Nevertheless, various extensions of our research seem promising, such as the application

of dynamic inefficiency measurement to other industries in which the role of adjustment costs is

expected to be different. Another interesting opportunity for further research would be to apply

the static and dynamic methods to a more homogeneous sample and to draw concrete conclusions

with regard to the financial effects for the firms under incentive-based regulation schemes.
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Appendix A. Parametric approximation of the firm-specific shadow values of capital

The dynamic cost function in a quadratic functional form is given by

Wit = α0 + αQE QEit + αQC QCit + αK Kit + αw wit + αc cit

+
1

2
αQE,QE QEitQEit +

1

2
αQC,QC QCitQCit +

1

2
αK,K KitKit

+
1

2
αw,w witwit +

1

2
αc,c cit cit + αQE,QC QEitQCit + αQE,K QEitKit

+ αQE,w QEitwit + αQE,cQEit cit + αQC,K QCitKit + αQC,w QCitwit + αQC,cQCit cit

+ αK,w Kitwit + αK,cKit cit + αw,cwit cit + αt tt +
1

2
αt,t t

2
t ,

(A.1)

where the subscripts i and t denote the firm and year, respectively; W represents long-run costs;

QE is the flow of electricity; QC is the number of customers; K is the capital stock; t is a time

trend; and c and w are the price of capital and the price of the variable input, respectively.

Representing the dynamic cost function by g(·), we estimate the parameters of Equation A.1

by solving the following minimization problem:

min

T
∑

t=1

N
∑

i=1

ǫ2it

s.t. Wit = g(·) + ǫit ∀i, t, (i)

∂ g(·)/∂ QEit ≥ 0 ∀i, t, (ii)

∂ g(·)/∂ QCit ≥ 0 ∀i, t, (iii)

∂ g(·)/∂ wit ≥ 0 ∀i, t, (iv)

∂ g(·)/∂ cit ≥ 0 ∀i, t, (v)

∂ g(·)/∂ Kit ≤ 0 ∀i, t, (vi)

(A.2)

The problem minimizes the sum of the squared residuals of the quadratic dynamic cost function

subject to a set of inequality constraints that impose monotonicity required by economic theory.

The shadow value of capital is then approximated by the first derivative of the cost function with
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respect to the capital stock:

∂ g(·)

∂ Kit
= αK + αK,K Kit + αQE,K QEit + αQC,K QCit + αK,w wit + αK,c cit. (A.3)

Appendix B. Data sources

Table B.1: Data sources

Variable Source

Total Number of Customers (in millions)

= avg. no. customers per month FERC Form No.1: 301 - 12 (g)

Total Flow of Electricity (MWh)

= sales of electricity FERC Form No.1: 301 - 12 (d)

+ transfer of electricity received FERC Form No.1: 329 - TOTAL (i)

- transmission of electricity by others FERC Form No.1: 332 - TOTAL (d)

OPEX (in million 2002 US$)

= transmission expenses for electric operation and maintenance FERC Form No.1: 321 - 112 (b)

+ distribution expenses for electric operation and maintenance FERC Form No.1: 322 - 156 (b)

Capital Stock (in billion 2002 US$)

= transmission plant balance (begin of year) FERC Form No.1: 206 - 58 (b)

+ distribution plant balance (begin of year) FERC Form No.1:206 - 75 (b)

Gross Investments (in billion 2002 US$)

= gross investments in transmission

= transmission plant balance (end of year) FERC Form No.1: 207 - 58 (g)

- transmission plant balance (begin of year) FERC Form No.1: 206 - 58 (b)

+ transmission plant depreciation expenses FERC Form No.1: 336 - 7 (b)

+ gross investments in distribution

= distribution plant balance (end of year) FERC Form No.1: 207 - 75 (g)

- distribution plant balance (begin of year) FERC Form No.1: 206 - 75 (b)

+ distribution plant depreciation expenses FERC Form No.1: 336 - 8 (b)

Labor Cost Index Bureau of Labor Statistics

Producer Price Index Bureau of Labor Statistics

Consumer Price Index Bureau of Labor Statistics
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