
          

Institute of Energy Economics  

at the University of Cologne 

 

 

EWI Working Paper, No. 10/03 
 

 

 

Efficiency Effects of Quality of Service and Environmental Factors:  

Experience from Norwegian Electricity Distribution 
 

 

by 

 

Christian Growitsch          Tooraj Jamasb          Heike Wetzel 

 

 

 

 

August 2010 

 

 

 

 

 

 

 

 

 

 

 

 

 

The authors are solely responsible for the contents which therefore not necessarily represent the 

opinion of the EWI 

 



Efficiency Effects of Quality of Service and Environmental Factors:

Experience from Norwegian Electricity Distribution

Christian Growitsch∗ Tooraj Jamasb†,a Heike Wetzel‡

Since the 1990s, efficiency and benchmarking analysis has increasingly been
used in network utilities research and regulation. A recurrent concern is
the effect of environmental factors that are beyond the influence of firms
(observable heterogeneity) and factors that are not identifiable (unobserved
heterogeneity) on measured cost and quality performance of firms. This pa-
per analyses the effect of geographic and weather factors and unobserved
heterogeneity on a set of 128 Norwegian electricity distribution utilities for
the 2001-2004 period. We utilize data on almost 100 geographic and weather
variables to identify real economic inefficiency while controlling for observ-
able and unobserved heterogeneity. We use the factor analysis technique
to reduce the number of environmental factors into few composite variables
and to avoid the problem of multicollinearity. We then estimate the estab-
lished stochastic frontier models of Battese and Coelli (1992; 1995) and the
recent true fixed effects models of Greene (2004; 2005) without and with
environmental variables. In the former models some composite environmen-
tal variables have a significant effect on the performance of utilities. These
effects vanish in the true fixed effects models. However, the latter models
capture the entire unobserved heterogeneity and therefore show significantly
higher average efficiency scores.
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1 Introduction

Since the 1990s, the use of incentive-based regulation in network industries has been on
the rise in tandem with the liberalisation trend in infrastructure sectors. While market
mechanisms have been introduced in the potentially competitive activities, incentive-
based regulation models have sought to improve the efficiency of the natural monopoly
segments of these sectors.
The electricity sector presents a comprehensive example of implementation of liberal-

isation in network industries. Initially, the focus of the early electricity sector reforms
was mainly on implementing competition in the wholesale generation and retail sup-
ply activities. Meanwhile incentive regulation of the natural monopoly transmission
and distribution networks may be characterised as an afterthought (Jamasb and Pol-
litt, 2007). Some regulatory authorities, inspired by the notion of yardstick regulation
first presented by Shleifer (1985) have adopted benchmarking methods as part of the
regulatory proceedings. These methods are based on parametric efficiency and produc-
tivity analysis techniques stochastic frontier analysis (SFA), and corrected ordinary least
squares (COLS), and the non-parametric technique data envelopment analysis (DEA)
(see Jamasb and Pollitt, 2001).
However, it soon became evident that there is a potential conflict in the use of incentive

regulation and provision of quality of service. Both theoretical arguments presented (e.g.
Spence, 1975) and empirical findings (e.g. Ter-Martirosyan, 2003) have suggested that,
in the absence of specific arrangements, incentive regulation will lead to reduced quality
of service and the outcome will deviate from the socio-economic optimum. Therefore,
some studies have argued that incentive regulation and/or benchmarking models should
also incorporate quality of service (Giannakis et al., 2005; Growitsch et al., 2009; Yu
et al., 2007).
Moreover, the use of benchmarking techniques in regulation has given rise to the issue

that comparisons of firms and their relative efficiency measures should also take the
effect of firm-specific non-discretionary factors – factors that are beyond the control of
the management – into account. Such factors include economic, regulatory, geographical,
climatic and other conditions that can affect the cost and quality of service performance
of utilities. It is, however, problematic to ex-ante establish which non-discretionary
factors are relevant or how they should be taken into account. There are sound arguments
as to how some of these factors can influence the cost and quality performance of utilities.
At the same time, it can be argued that, in the long run, utilities adapt, at least to some
extent, to their operating environment and the effect of non-discretionary factors on
their performance diminishes.
Weather and geographic conditions are among the most commonly debated factors

perceived to be affecting the performance of utilities. There are alternative methods on
how to include non-discretionary factors such as geography into benchmarking models
(Yang and Pollitt, 2009). While the effect of environmental factors on utility performance
is of academic and regulatory interest there is rather limited evidence on the nature and
extent of their effect.
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This paper analyses the effect of geographic and weather conditions (observable het-
erogeneity) on the cost and quality performance of the Norwegian electricity distribution
network utilities. We use a panel of economic and technical data for 128 distribution
networks for the period from 2001 to 2004 together with nearly 100 geographic and
weather factors in their service area. In order to reduce the number of environmental
variables to a manageable number and to avoid the problem of multicollinearity, we
estimate composite ‘factors’ for the geographic and weather conditions applying factor
analysis. We then incorporate the estimated factors into an efficiency analysis of the
utilities. In order to analyse the effect of controlling for firm specific observable and un-
observed heterogeneity on the efficiency estimates, we estimate the established stochastic
frontier models of Battese and Coelli (1992; 1995) and the recent true fixed effect model
of Greene (2004; 2005) with and without the composite factors. The next Section briefly
discusses the regulation of electricity distribution utilities in Norway. Section 3 presents
the methodology used in the analysis. Section 4 presents and discusses the results.
Section 5 is the conclusions.

2 The Norwegian Electricity Reform and Distribution Networks

Norway was one of the pioneering countries in implementing market-oriented electricity
sector reforms. The Norwegian reform was enacted in the Energy Act of 1990 and came
into effect in 1991 following Chile (mid-1980s) and the United Kingdom (in 1990). The
reform involved a structural change in the sector by unbundling of the transmission and
distribution networks from the potentially competitive generation and supply functions.
The Norwegian reform, unlike in some other countries such as the UK, did not involve
privatization of the sector which is predominantly under local (municipal/county) and
state ownership.
At the time of reform there were 70 generation and 230 distribution network utilities

in operation (Bye and Hope, 2005). The large number of utilities is mainly the result of
dispersed hydroelectric resources and the established role of local politics in the coun-
try. As it became evident later, this was an advantage in introducing competition in
generation and implementing advanced benchmarking methods in incentive regulation
of networks. The dominant public ownership of the sector did not represent a major
obstacle in the introducing of the reform though it may have somewhat slowed down the
introduction of competition (Magnus, 2000).
Norway was also among the first countries to introduce benchmarking and incentive-

based regulation. Initially, the distribution utilities operated under a rate of return
(ROR) regulation regime. The first incentive regulation of these utilities was introduced
in 1997 which used efficiency benchmarking of the utilities based on the DEA technique.1

Despite its theoretical and conceptual appeal, electricity regulators have not explic-
itly integrated quality of service in their benchmarking exercise. A notable exception
is, however, Norway which introduced quality-dependent revenue caps already in 2001

1 See e.g. Edvardsen et al. (2006) for more details in the benchmarking and quality of service regulation
in Norway.
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(Heggset et al., 2001; Langset et al., 2001). Norway is also the only country that explic-
itly incorporates quality of service in the form of the cost of non-delivered energy from
estimated customer willingness-to-pay (WTP) as an integrated part of the benchmarking
exercise and incentive regulation of distribution networks in 2001.
Since 2007, the Norwegian regulator for water and energy NVE has adopted annual

distribution price controls which are partly based on benchmarking analysis. The reg-
ulator has also analysed a large number of geographic and weather variables and has
applied the SFA technique to construct composite indices from few selected variables.
The actual benchmarking used utilizes measures of snow, forest, and coastal climate
as output variables in the DEA model (see NVE, 2006a,b). Hence the model assumes
that these affect the firms’ production function (rather than efficiency). To control for
effects which influence the efficiency level rather than the production technology, the
regulator uses a second-stage regression to estimate the efficiency effect of the number of
connections to regional networks, capacity of distributed generation sources connected
to the network, and the number of islands in the service area.
Although, from a technical point of view, distribution networks can be regarded as

relatively simple activities, there is no consensus in the academic literature or among the
regulatory practitioners as how to model this activity.2 In particular, it is often argued
that some potentially important contextual and environmental factors that are likely to
affect the cost and quality of service of the utilities are not included in the benchmarking
models. Norway is the only country where the regulator has systematically examined
the effects of environmental factors on the performance of the quality of service and
reflected these in the benchmarking models.
Given the above context, Norway represents a particularly interesting case to study the

effect of environmental factors. Firstly, the Norwegian sector has been under incentive
regulation for a number of years. Second, the incentive regulation regime has removed
much of the managerial inefficiency of the networks (Førsund and Kittelsen, 1998; Ed-
vardsen et al., 2006). Third, unlike most other countries, the Norwegian electricity sector
consists of a large, though declining due to mergers and acquisitions, number of network
utilities which enable the use of analytical methods. And forth, the Norwegian regulator
publishes the external cost of quality (cost of energy not supplied) which allows a more
comprehensive analysis of a utility’s efficiency.

3 Methodology

This section describes the methodology we apply and our estimation approach. First,
we present the use of factor analysis in this study. Second, we provide a brief overview of
(input) distance functions and their use in efficiency analysis. Subsequently, we describe
our estimation methodology based on parametric SFA technique.

2 See Jamasb and Pollitt (2001) for a review of the benchmarking in electricity distribution networks
and Jamasb and Pollitt (2003) for an overview of the variables used in benchmarking and efficiency
studies.

4



3.1 Factor analysis

Modeling and analysis of the effect of non-discretionary factors on the utilities’ perfor-
mance is not straightforward. Yang and Pollitt (2009) present an overview of the main
approaches to treatment of non-discretionary factors. The number of potentially relevant
factors can be large. Also, the selection of appropriate variables needs to be justified. In
particular, in the non-parametric technique of DEA an increase in the number of vari-
ables leads to the ‘dimensionality’ issue.3 Selection of non-discretionary variables has
often been based on received experience or ex ante cost driver analysis. With regards
to the choice and analysis of the effect of non-discretionary factors the approaches vary
from ex ante analysis and in-model inclusion to different types of ex post analysis of
efficiency results. In parametric techniques such as SFA the independent variables can
be examined for possible multicollinearity which can result in leaving out some of the
highly correlated variables.
An alternative approach to analyze the effects of a large number of non-discretionary

variables is to reduce these into a limited number of composite factors. A useful approach
to achieve this is to use factor analysis (FA). FA is a set of multivariate statistical
techniques that analyses the interdependencies between a set of related variables in
order to extract a smaller number of composite factors. Econometrically, FA identifies a
number of latent constructs that explain the variance shared by a set of variables. That
is, factor extraction is based only on the variance that is shared among a set of observed
variables and excludes any unique and error variances form the solution. In contrast,
principal component analysis (PCA), another frequently used data reduction technique,
extracts components on the basis of all variance. The question of when one of the two
techniques is to be preferred is not fully agreed upon among statistical theorists. Some
argue in favor of FA, while others argue in favor of PCA, and still others argue that
there is almost no difference between the two techniques (Costello and Osborn, 2005).
As we consider a set of weather and geographical variables, where measurement errors
and outliers in the date might result in a relatively high portion of error and unique
variance in total variance, we choose the FA technique.
FA is a particularly useful technique for efficiency analysis involving geographic and

weather conditions. These factors constitute and interact within a complex system with
causal effects. Therefore, the use of composite factors rather than elimination of some
seemingly correlated variables preserve the holistic nature of geographic and weather
systems. Despite its apparent benefits only a small number of non-parametric efficiency
studies have applied FA to address the dimensionality issue and to introduce statistical
inference in the analysis (Wheelock and Wilson, 2001; Wilson and Carey, 2004; Yu et al.,
2008). To the best of our knowledge, FA has not been used in parametric efficiency
analysis, before.
We aim to examine the effect of weather and geographic variables on performance

of the utilities. The data available includes 95 such variables. As we have no prior

3 That is, as the number of variables increases, the dimensionality of the model increases. This in
turn reduces the discriminatory power of the model when measuring the relative efficiency among
the observations in the sample.

5



knowledge of which variables or combinations represent the underlying factor structure
and we found significant multicollinearity we use exploratory factor analysis (EFA) to
narrow down and group the relevant ones.4

In order to decide how many factors to retain we apply two tests. First, using the
Kaiser criterion we drop all factors associated with eigenvalues lower than unity.5 As this
criterion leads to a rather high number of factors, we additionally apply the Scree test.
This graphical method suggest to plot the factors against their eigenvalues in descend-
ing order (Scree plot) and to retain only the important factors with large eigenvalues
represented by data points above the break in the slope of the plot. All other factors
with lower eigenvalues are considered as unimportant and can be dropped.
Ultimately, we retain 7 factors which cumulatively explain more than 71% of the

shared variance of the data (see Appendix). We estimate the factor loadings (the cor-
relation between observed variables and factors) through extraction and use varimax
(orthogonal) rotation to maximize the difference between two factors. Finally, we use
the Bartlett scoring to obtain factor scores for any single observation.6

3.2 Distance functions and stochastic frontier analysis

In order to determine whether and how observable and unobservable heterogeneity in-
fluence utilities’ cost-quality performance, we measure firm-specific technical (cost) ef-
ficiency within a parametric input distance function framework. The results can be
interpreted as inefficiency due to over-usage of costs. Distance functions were first in-
troduced by Shephard (1953) and can be of input or output orientation. While an input
distance function seeks a production technology’s minimal proportional contraction of
the input vector for a given output vector, an output distance function maximizes the
output vector, given an input vector.
The use of input distance functions in modelling electricity distribution is common,

since output use (i.e. network services) is a derived demand and is exogenously de-
termined by final customers’ electricity demand. Further, we apply an input distance
function approach in this study, as it allows the estimation of firm-specific inefficiency
even when availability of input price data is limited. In such cases, a distance function
approach is superior to the estimation of a cost function (Coelli et al., 2005).
An input distance function can be defined as

DI(x, y) = max {ρ : (x/ρ) ∈ L(y)} , (1)

where the input set L(y) represents all input vectors x that can produce the output
vector y, and measures the proportional reduction of the input vector x. Färe and

4 Another type of FA is the confirmatory factor analysis (CFA). This approach is used if a predefined
assumption on the relationship between the observed variables and the underlying factor structure
exists. CFA then tests this assumption on the basis of an a priori specified factor model.

5 Eigenvalues indicate the proportion of variance explained by each factor.
6 Due to the high number of variables, we omitted tables of factor loadings and Bartlett scores.
Information are available from the authors upon request.
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Primont (1995) show that the following properties hold for an input distance function:
DI(x, y):

• linearly homogeneous in x,

• non-decreasing in x and non-increasing in y,

• concave in x and quasi-concave in y, and

• if x ∈ L(y), then DI(x, y) ≥ 1, with DI(x, y) = 1, if x is on the frontier of the
input set.

Based on the above, we are able to measure input-oriented technical efficiency (TE).
Following Farrell (1957), firm specific technical efficiency can be defined as:

TE = 1/DI(x, y), where 0 ≤ TE ≤ 1. (2)

Technical efficiency is measured as the reciprocal of the value of the distance function.
A firm operating on the frontier shows a value of the input distance function of 1 (e.g.
Balk, 1998) and an efficiency score of 1, likewise (fully efficient). As noted above, the
efficiency scores obtained in this study are denoted technical cost efficiency, as all inputs
used represent the firms’ costs.
We estimate a parametric input distance function in a translog functional form. Intro-

duced by Christensen et al. (1973), it represents a generalization of the Cobb-Douglas
functional form. Our translog input distance function with K inputs and M outputs is
parameterized as:

lnDI
it = α0 +

M∑

m=1

αm ln ymit +
1

2

M∑

m=1

M∑

n=1

αmn ln ymit ln ynit

+
K∑

k=1

βk ln xkit +
1

2

K∑

k=1

K∑

l=1

βkl ln xkit ln xlit

+
K∑

k=1

M∑

m=1

δkm ln xkit ln ymit + φ1 t+
1

2
φ11 t

2 + vit.

(3)

Inputs and output are as presented above; t represents a time trend to cover tech-
nical change and vit is a random error term. Subscripts i (i = 1, 2, . . . , N) and t
(t = 1, 2, . . . , T ) denote firm and time period respectively. The parameters to be es-
timated are α, β, δ, and φ.
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To facilitate the interpretation of the first-order translog parameters we normalize all
the variables by their sample median. Homogeneity of degree one in inputs is imposed
by the constraints

K∑

k=1

βk = 1,
K∑

l=1

βkl = 0, k = 1, 2, . . . , K,

and
K∑

k=1

δkm = 0, m = 1, 2, . . . ,M.

(4)

Symmetry is given if the second order coefficients satisfy

αmn = αnm, m, n = 1, 2, . . . ,M,

and

βkl = βlk, k, l = 1, 2, . . . , K.

(5)

In this study, we apply the SFA techniques to estimate the presented translog input
distance function, and to obtain measures for firm-individual inefficiency. The input
distance function in Equation 3 is transformed into an econometric model which can be
estimated directly. Imposing homogeneity by deflating K-1 inputs by the K-th input
leads to:

lnDI
it − ln xKit = g [(ln xkit − ln xKit), ymit, t] + vit. (6)

Here, g(·) represents the translog functional form. To estimate the distance function,
this expression is rearranged as

− ln xKit = g [(ln xkit − ln xKit), ymit, t] + vit − uit, (7)

where uit = lnDI
it represents the non-negative technical inefficiency.

3.3 Estimation strategy

In order to estimate the translog input distance function and to measure firm-specific
efficiency, we apply models which allow for time-varying inefficiency following Battese
and Coelli (1992, 1995) and Greene (2004, 2005). The models differ in their ability to
account for unobserved and observable heterogeneity, and, hence, model comparisons al-
low analysing the effect of controlling for different kinds of heterogeneity on the efficiency
estimates.
For a translog input distance function the Battese and Coelli 1992 model (BC 1992)

takes the shape of Equation 7, where vit is a normally distributed random error term
(vit ∼ iidN(0, σ2

v)), and the inefficiency term uit is assumed to be an exponential function
of time. That is,

uit = {exp [−η(t− T )]}ui, i = 1, 2, . . . , N, t = 1, 2, . . . , T, (8)
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where η is an unknown parameter to be estimated, and ui is assumed to follow a non-
negative truncated normal distribution (uit ∼ iidN+(µ, σ2

u)). This model incorporates
neither observable heterogeneity nor unobserved heterogeneity. It serves as our basic
model.
Compared to the BC 1992 model, the Battese and Coelli 1995 model (BC 1995)

accounts for observable heterogeneity by modeling the mean of the inefficiency term as
a function of the estimated composite factors zit. That is,

µit = λ′zit, (9)

where λ′ is a vector of unknown parameters to be estimated. The time variant in-
efficiency term uit is assumed to follow a non-negative truncated normal distribution
(uit ∼ iidN+(µit, σ

2
u)).

The third model, the true fixed effects (TFE) model of Greene, accounts for unob-
served heterogeneity additionally. Compared to both Battese and Coelli models, the
TFE model avoids the interpretation of unobserved heterogeneity as inefficiency and
therefore upward biased inefficiency estimates. Rather, it may underestimate ineffi-
ciency if (a part of) inefficiency is persistent over time. For a translog input distance
frontier, the TFE model can be defined as

− ln xKit = αi + g [(ln xkit − ln xKit), ymit, t] + vit − uit, (10)

where αi represents a firm-specific fixed-effect that accounts for company characteristics
not captured by the included variables. The assumed distributions of the error term vit
and the inefficiency term uit are as before and the firm-specific fixed effect αi is assumed
to enter the mean of the inefficiency term µit. We estimate two variants of this model
(TFE 1 and TFE 2). While TFE 1 accounts for unobserved heterogeneity only, TFE
2 incorporates both observable and unobserved heterogeneity. That is, in TFE 2 the
estimated composite factors zit also appear in the mean of the inefficiency term:

µit = αi + λ′zit. (11)

All model estimates are obtained by maximum likelihood estimation techniques. As only
the composed error term ǫit = vit − uit is observed, the firm’s inefficiency is estimated
by the conditional mean of the inefficiency term ûit = E [uit|ǫit] (Jondrow et al., 1982).
Finally, the annual firm-specific technical cost efficiency is calculated TCEit = exp(−ûit).

3.4 Data

The data set used in this study is a balanced panel for 128 Norwegian distribution
utilities for the years 2001 to 2004. We specify a simple model with one input and
two outputs. Following the Norwegian benchmarking approach, we incorporate quality
of service into our model by using social costs as a single input in monetary terms.
Social costs are the sum of total production costs (operating expenditures and capital
expenditures) and external quality costs. External quality costs are calculated by the
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multiplication of the energy not supplied with the estimated customer willingness-to-pay
for an uninterrupted energy supply. The two outputs are the number of final customers
and energy supplied measure in megawatt-hours (MWh). As noted by Neuberg (1977),
these two variables reflect the different marketable goods of the joint service of electricity
distribution. Table 1 and 2 show the descriptive statistics and the average development
over time for the relevant variables.

Table 1: Summary statistics

Variable Obs. Mean Std. Dev. Minimum Maximum

Social cost (e’000) 512 77,830 168,191 5,045 1,598,890

Total cost (e’000) 512 75,443 163,018 4,949 1,561,140

Quality cost(e’000) 512 2,388 6,058 9 88,463

Final customers (No) 512 20,169 53,409 925 516,339

Energy supplied (MWh) 512 533,895 1,497,244 16,504 15,482,400

As it can be seen from Table 2, social cost decreased slightly over time. It is inter-
esting that quality cost increased, while total cost (private production cost) decreased.
If the firms increase their quality of service we would observe exactly the opposite de-
velopment: an increase in total cost as a results of more infrastructure investments or
higher operating and maintenance efforts, and a decrease in quality costs as a result of a
lower amount of energy not supplied. Hence, these results indicate that the social cost,
the sum of total cost and quality cost, for supplying lower quality of service are lower
than the social cost for an increase in quality of service.

Table 2: Annual averages

Variable Mean 2001 Mean 2002 Mean 2003 Mean 2004

Social cost (e’000) 78,280 79,677 77,084 76,281

Total cost (e’000) 76,225 77,813 73,814 73,919

Quality cost(e’000) 2,055 1,863 3,270 2,363

Final customers (No) 20,034 20,083 20,210 20,344

Energy supplied (MWh) 562,875 544,059 504,835 523,809

In addition to the input and output variables we incorporate a variety of weather and
geographic variables in our analysis. Altogether, the data available includes 95 such
variables which are reduced to 7 composite factors by utilizing FA (cp. Section 3.1).
Table 3 provides a summarized overview on the variables used in this analysis.
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Table 3: Geographic and weather variables

Weather conditions

• Precipitation (annual rainfall, annual snowfall, highest observed daily rainfall, highest
observed daily snowfall, . . . )

• Temperature (annual average temperature, lowest daily average temperature, highest daily
average temperature, . . . )

• Wind speeds (average wind speeds, lowest wind speeds, highest wind speeds, . . . )

• Lightning (number of lightnings, average strength of lightnings, . . . )

• . . .

Geographic conditions

• Altitude above sea level (average altitude, lowest altitude, highest altitude)

• Distance to coast (average distance, minimum distance, maximum distance)

• Slope (average slope, minimum slope, maximum slope)

• Forest structure (share of coniferous forest with high/low/medium production potential,
share of mixed forest with high/low/medium production potential, . . . )

• Population concentration (share of small towns, share of town centers, share of dense areas,
. . . )

• Share of forest, share of agriculture area, share of wetland, share of shallow soil, share of
water/lake

• Mini/micro power plants (number of mini/micro power plants, total effect of mini/micro
power plants, . . . )

• . . .

4 Results

In order to compare the effect of the choice of model on results we adopt a stepwise
approach. We first use the utility data to estimate the established Battese and Coelli
(1992; 1995) models. These models can serve as a reference for subsequent models. The
first model, the BC 1992 model, does not include the composite geographic and weather
factors estimated from the FA. It is a one input and two output model with negative
social cost as the dependent variable. As shown in the second column of Table 4 the first
order coefficients of outputs, number of customers and energy supplied, are statistically
significant and have the expected signs. Using the expression γ = λ2/(1 + λ2) = σ2

u/σ
2

the gamma (γ) value is 0.9225 – that is, about 92 percent of total variations in cost are
due to technical cost inefficiency. This implies that the share of random error in total
variations in cost is small. As shown in Table 5, the estimated average efficiency scores
are comparably low.
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In a second step we estimate the BC 1995 model. This model accounts for the impact
of environmental factors on the utilities’ performance by allowing the inefficiency term
µit to be a function of the composite geographic and weather factors estimated from
the FA. Three out of the seven composite factors are found to be significant. In Factor
1 and 4 the highest loadings are carried by several wind speed and snowfall variables,
respectively. Hence, the significant and positive coefficients of these factors suggest
that a higher wind and snowfall intensity leads to an increase in maintenance cost and,
therefore, to a higher technical cost inefficiency. In Factor 5, the highest loadings are
observed for variables that describe the population concentration. The significant and
negative coefficient of Factor 5 therefore indicates a lower technical cost inefficiency for
firms operating in an area with a higher population concentration. Compared to the BC
1992 model, the average efficiency scores increased by more than 10 percentage points
(Table 5). This result indicates that a notable share of the inefficiencies that we initially
estimated with our basic model can be interpreted as being beyond managerial control.
In the next step of our analysis we estimate two versions of the TFE model as described

in the method section above. In our first specification (TFE 1) we only use social cost
as the single input and normal outputs leaving out the environmental factors. In our
second specification (TFE 2) we extend the model by allowing the inefficiency term µit

to be a function of the estimated composite factors and the firm-specific fixed effects
capturing unobserved heterogeneity.
As can be seen in Table 4, in both TFE models the first order coefficients of the

outputs are significant and have the correct signs.7 However, in the TFE 2 model none
of the included composite factors is significant. Referring to the efficiency estimates, the
results from the TFE models show rather high efficiency scores (Table 5). Such increase
in scores is generally expected from these models (cp. Farsi et al., 2005). Our results show
that, in this case, this increase is not due to inclusion of the composite geographic and
weather factors in the model. However, the wide range of scores between the Battese
and Coelli (1992; 1995) models and the TFE models justify further studies into the
sources of differences. In particular it is important to determine the extent to which
TFE models may reflect time-invariant inefficiency elements. Applying a series of mean
comparison tests shows that all but the two TFE models produce significantly different
efficiency scores. The development of scores over time is, however, not significant for
any of the estimators.

7 Coefficients for firm-specific time-invariant fixed-effect dummy variables are not included due to
limited space.
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Table 4: Empirical resultsa,b

Variable BC 1992 BC 1995 TFE 1 TFE 2

y1 −0.5951∗∗∗ −0.6847∗∗∗ −0.6965∗∗∗ −0.6292∗∗∗

(0.0440) (0.0441) (0.1005) (0.1191)

y2 −0.2557∗∗∗ −0.2148∗∗∗ −0.2171∗∗∗ −0.2359∗∗∗

(0.0359) (0.0417) (0.0693) (0.0988)

y1y1 −0.1899 −0.3044 0.0170 0.0859

(0.1850) (0.2237) (0.3156) (0.4144)

y1y2 0.2720∗ 0.2062 0.1016 −0.1493

(0.1602) (0.1919) (0.2866) (0.3772)

y2y2 −0.3885∗∗∗ −0.1428 −0.2201 0.1770

(0.1435) (0.1679) (0.2692) (0.3530)

t −0.0144∗∗ −0.0123∗ −0.0143∗∗∗ −0.0118∗

(0.0060) (0.0068) (0.0042) (0.0067)

tt 0.0262∗∗∗ 0.0204 0.0221∗∗∗ 0.0234∗∗

(0.0065) (0.0144) (0.0076) (0.0115)

Constant 0.3744∗∗∗ 0.1930∗∗∗ 0.2047∗∗∗ 0.1139

(0.0279) (0.0282) (0.0530) (0.1086)

Factor 1 0.0433∗∗∗ 0.0432

(0.0101) (2.0478)

Factor 2 −0.0086 −0.0261

(0.0092) (58.411)

Factor 3 −0.0121 0.0467

(0.0138) (79.455)

Factor 4 0.0672∗∗∗ 0.0637

(0.0111) (73.918)

Factor 5 −0.2527∗∗∗ −0.2457

(0.0160) (29.414)

Factor 6 0.0094 0.0020

(0.0096) (5.3645)

Factor 7 0.0092 0.0269

(0.0088) (28.286)

Constant 0.4359∗∗∗ 0.2327∗∗∗ 0.1482 0.1491

(0.0373) (0.0299) (0.6751) (55.450)

Sigma2 0.0515 0.0266 0.0052 0.0086

Gamma 0.9225 0.5459 0.3654 0.3256

Sigma u2 0.0475 0.0145 0.0019 0.0028

Sigma v2 0.0040 0.0121 0.0033 0.0058

a All maximum likelihood estimates of the models are obtained by using the software packages
Frontier 4.1 and Limdep 9.0.b Standard errors are reported in parenthesis.***,**, and *: Significant on
the 1%-, 5%-, and 10%-level.
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Table 5: Efficiency scores by model and year

Year BC 1992 BC 1995 TFE 1 TFE 2

2001 0.6494 0.7630 0.8477 0.8508

2002 0.6473 0.7616 0.8480 0.8505

2003 0.6452 0.7594 0.8485 0.8496

2004 0.6430 0.7587 0.8481 0.8485

2001-2004 0.6462 0.7607 0.8481 0.8498

5 Conclusions

As efficiency and benchmarking analysis are increasingly used in network industries and
utilities research and regulatory context a recurrent concern is whether environmental
factors affect the firms’ performance or the choice of appropriate models. In this paper
we present an empirical analysis of the effect of geographic and weather factors on the
performance of the Norwegian electricity distribution utilities. Norway is a suitable case
for such a study as it has a large number of utilities and detailed data of an extensive
range geographic and weather conditions of the utilities service areas are available.
We used FA to reduce the number of environmental factors from nearly one hundred

to only seven composite factors. We first estimated conventional SFA models with and
without the composite factors as reference point. We found that incorporating environ-
mental factors did increase average efficiency by more than ten percentages points.
Next, we estimated the recently developed TFE models first without and then with the

composite factors included. As in other studies using such models we found significantly
higher average efficiency scores in both models. However, at the same time, we did not
find a noticeable difference in the average efficiency scores of the two models. Hence,
our results on the efficiency effects of environmental factors remain inconclusive.
On the whole, the results suggest that the choice of the type of SFA model is more

important than whether to include the environmental factors in them. Moreover, the
difference between the levels of average efficiency scores between the conventional and the
TFE SFA models imply that we need to be aware of the extent to which time-invariant
inefficiencies may be embodied in the efficiency scores of the latter model types. This is
in particular important for their use in regulatory benchmarking.
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Appendix
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Figure A.1: Scree plot of eigenvalues

Table A.1: Results of factor analysis

Factor Eigenvalue Difference Proportion Cumulative

Factor 1 19.62557 4.55790 0.21800 0.21800

Factor 2 15.05758 5.05379 0.16740 0.38540

Factor 3 10.01388 1.62706 0.11120 0.49660

Factor 4 8.38682 3.28869 0.09320 0.58980

Factor 5 5.09813 1.73995 0.05660 0.64640

Factor 6 3.35819 0.21618 0.03730 0.68370

Factor 7 3.14201 0.95295 0.03490 0.71860
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