
 

AUTHOR 
Jan Richter (EWI) 
 
EWI Working Paper, No 13/01 
 
January 2013 
 
 
 
 
 
 
 
Institute of Energy Economics at the University of Cologne (EWI) 
www.ewi.uni-koeln.de 

Incomplete Information in Cournot Oligopoly:  
The Case of Unknown Production Capacities 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CORRESPONDING AUTHOR 
Jan Richter 
Institute of Energy Economics at the University of Cologne (EWI) 
Tel: +49 (0)221 277 29-313 
Fax: +49 (0)221 277 29-400 
jan.richter@ewi.uni-koeln.de 
 

 

 

 

 
 

 

 

 

 

 

 

ISSN: 1862-3808 
 
 
 
The responsibility for working papers lies solely with the authors. Any views expressed are 
those of the authors and do not necessarily represent those of the EWI. 

Institute of Energy Economics 
at the University of Cologne (EWI) 
 
Alte Wagenfabrik 
Vogelsanger Straße 321 
50827 Köln 
Germany 
 
Tel.: +49 (0)221 277 29-100 
Fax: +49 (0)221 277 29-400 
www.ewi.uni-koeln.de 



Incomplete Information in Cournot
Oligopoly: The Case of Unknown

Production Capacities
Jan Richter∗

January 4, 2013

Abstract

A Cournot oligopoly in which firms face incomplete information with
respect to production capacities is studied. For the case where the firms’
capacities are stochastically independent, the functional form of equilib-
rium strategies is derived. If inverse demand is concave, a unique sym-
metric equilibrium exists, and if demand is linear, then every equilibrium
is symmetric. In the case of duopoly, the impact on social welfare when
firms commit ex-ante on exchanging information is analyzed. Sharing
information increases expected output and social welfare in a large class
of models. If the demand intercept is sufficiently large, sharing infor-
mation increases producer surplus and decreases consumer surplus (and
vice versa).
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1 Introduction

Previously conducted research on Bayesian-Cournot oligopolies deals with in-

complete information with respect to inverse demand or production costs or

both. In the paper at hand, a model in which the firms’ production capacities

are private information to the firms is analyzed. Models of this kind are not

yet included in research concerning Bayesian Cournot oligopolies. In the well-

known case where costs are unknown, the cost function is typically assumed to

be convex; therefore, the model frameworks developed to deal with this source

of uncertainty can not be applied to the case of unknown capacities (via pro-

duction costs approaching infinity as output approaches the capacity limit).

Alternatively, capacity constraints can be modeled via a penalty payment em-

bedded in the firms’ payoff function, such that firms receive a negative payoff

if capacities are exceeded. However, this might destroy the quasi-concavity

of the expected payoff function and thus may lead to the non-existence of

equilibria.

Instead, we model a firm’s capacity restriction by curtailing a firm’s strategy

space, ensuring that the existence of an equilibrium is implied by Nash’s theo-

rem under standard assumptions on inverse demand and costs if the common

prior is finite. For the case where capacities are stochastically independent

and the common prior may be infinite, we characterize the functional form of

equilibrium strategies: In every equilibrium firms fully utilize their capacities

up to some threshold. If the capacity with which firms are endowed exceeds

this threshold, then firms produce a constant quantity that equals the inner

maximum of the expected payoff function. This implies that a firm’s strategy

space is essentially one-dimensional.

Under the additional assumption that demand is strictly concave and that

the firms’ capacities are identically distributed, we show that a unique symmet-

ric equilibrium exists. The expected output of the industry is smaller compared

to the output of the standard form Cournot oligopoly. If demand is linear, we

find that every equilibrium must be symmetric. This is because production

2



decisions are strategic substitutes and each firm’s best response function only

depends on the expected aggregate output of the other firms.

For the special case of two firms and a simple common prior belief, we ana-

lyze the impact of information sharing on producer surplus, consumer surplus

and social welfare. This is done by comparing the unique symmetric equi-

librium when information is incomplete, the private information equilibrium,

with the equilibrium of the corresponding complete information game, the

shared information equilibrium.

In order to calculate expected profits and outputs, an explicit characteri-

zation of equilibrium strategies is required. However, due to non-negativity

and capacity constraints standard techniques do not apply to derive closed-

form solutions of equilibrium strategies. Therefore, we access the impacts on

surplus and welfare by using inequality arguments.

While consumers benefit from an increase of expected output, they suffer

from a decrease of the variance of outputs. Since under complete information

equilibrium outputs are negatively correlated, the variance of total industry

output is potentially reduced. We find that the net effect, which determines

whether sharing information is beneficial for consumers, is ambiguous: While

consumers benefit from sharing information when the horizontal demand in-

tercept a is small, they increasingly suffer from information sharing when a

increases. Thus, the change in consumer surplus is positive for small values of

a and negative for sufficiently large values. This effect is driven by a constel-

lation in which both firms are endowed with a large amount of capacity, thus

leading to an “overproduction” under incomplete information as the total in-

dustry output exceeds the Cournot output. Due to information sharing, firms

reduce their output accordingly. In contrast, the change of producer surplus

may be negative for small values of a and is positive if a is sufficiently large.

3



2 Literature Review

Regarding Cournot oligopolies with complete information, a number of au-

thors analyze equilibrium existence and uniqueness when production capac-

ities are bounded and asymmetric. For example, Bischi et al. (2010) and

Okuguchi and Szidarovszky (1999) discuss a wide range of oligopoly models

and provide results on existence and uniqueness of equilibria. As in the paper

at hand, production capacity is modeled by curtailing the strategy spaces.

For the case of incomplete information, Einy et al. (2010) provide a gen-

eral framework of Bayesian-Cournot games and provide results of existence

and uniqueness of Bayes-Nash equilibria. They allow for incomplete informa-

tion with respect to the demand function as well as with respect to the cost

function. However, the case of unknown capacities is not covered, and the

model framework can not be applied.

The work on information sharing in oligopoly was pioneered by Novshek

and Sonnenschein (1982), Clarke (1983) and Vives (1984). Novshek and Son-

nenschein (1982) and Vives (1984) discuss a duopoly with uncertain linear

demand, whereas Clarke (1983) analyzes an oligopoly where both demand

and costs may be unknown. Raith (1996) provides a general model that al-

lows for Bertrand or Cournot competition and incomplete information with

respect to costs or demand. If parameters are specified in an appropriate way,

virtually all models on information sharing in oligopoly follow in special cases.

As Clarke (1983), Raith (1996) applies a general result provided by Radner

(1962): If the joint distribution of private values is normal, then equilibrium

strategies are affine. Raith (1996) shows that if firms’ signals are independent

private values and if each firm perfectly learns its private value, meaning that

no noise is added, then industry-wide information sharing is always profitable

for firms.

However, equilibrium strategies are not affine in our model. In the case of

uncertain demand, Maleug and Tsutsui (1998) find that standard results on

information sharing can be reversed if equilibrium strategies are not affine.
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Here, non-linearity stems from non-negativity constraints or capacity limits.

In particular, if demand is uncertain, consumer surplus can decrease although

firms have an incentive to share information – in contrast, Raith (1996) and

the literature cited therein find that firms do not have an incentive to share

information when demand is uncertain, but consumers would profit from shar-

ing information. Moreover, Maleug and Tsutsui (1998) demonstrate that in-

formation sharing is profitable as long as the the variation of demand is suf-

ficiently large. In the case of uncertain costs, Shapiro (1986) finds that firms

have an incentive to share information, and that information sharing increases

social welfare but decreases consumer surplus.

In the work at hand, we also provide a result complementary to Maleug

and Tsutsui (1998). We find that firms might not have an incentive to share

their information, but consumers would benefit from sharing. Moreover, if

the variance of the firms’ capacities is sufficiently large, then firms have an

incentive to share their information.

The remainder of the paper is structured as follows: Section 3 presents the

model framework. Section 4 presents the private information equilibrium and

provides a detailed characterization of the symmetric equilibrium strategy. Re-

sults on the impact of information sharing on surplus and welfare are derived

in Section 5. Lastly, Section 6 concludes.

3 The Model

We consider a set N = {1, 2, . . . , n} of firms that may face uncertainty regard-

ing the other firm’s endowment with production capacity. Firms only differ

with respect to their production capacities. In a Bayesian approach, a strat-

egy of firm i is a decision rule that specifies a firm’s output for every possible

information set with which the firm might be endowed.

More formally, we denote T = [0, t̂]⊆ [0,∞] as the set of possible capacity

levels and Ω =
∏

n∈N T as the set of possible states of nature. The common
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prior belief µ is a probability measure on Ω (with respect to some appropriate

σ-field). An element of Ω is denoted byω= (ω1,ω2, . . . ,ωn). We assume that

every firm is endowed with a production capacity exceeding zero with positive

probability. The information with which a firm is endowed when making its

output decision is described by a random variable Ti : Ω → Ωi, where Ωi

is chosen appropriately. Moreover, we assume that E
�

|Ti|
�

< ∞ for all i.

The information sets of firm i are then the elements of the σ−algebra σ(Ti)
generated by Ti.

1 A strategy is a Borel measurable and integrable function

qi : Ωi 7→ R+ satisfying qi(Ti(ω)) ≤ ωi.
2 Lastly, the strategy space of firm

i is denoted by Si and the space containing all strategy profiles is given by

S =
∏n

i=1 Si.

As defined above, qi(Ti(ω)) denotes the output of firm i. We let Q(ω) :=
∑n

i=1 qi(Ti(ω)) denote the overall production. The inverse demand function

and the cost function are denoted by P and C , respectively. The state-dependent

payoff function ui of firm i is given by

ui(ω, qi, q−i) = qi(Ti(ω))P(Q(ω))− C(qi(Ti(ω))). (1)

The strategy profile q ∈ S is a Bayesian Cournot equilibrium if for every i

and q̃i ∈ Si the expected payoff function is maximized,

E
�

ui
�

·, qi, q−i
��

≥ E
�

ui
�

·, q̃i, q−i
��

, (2)

meaning that in equilibrium, no firm has an incentive to unilaterally deviate

from its strategy. Maximizing (2) is equivalent to maximizing the conditional

payoff expectation, so that

E
�

ui
�

·, qi, q−i
�

�

�σ
�

Ti
�

�

(ω)≥ E
�

ui
�

·, q̃i, q−i
�

�

�σ
�

Ti
�

�

(ω) (3)

1Following Einy et al. (2002), this is equivalent to the model by Harsanyi (1967-69) be-
cause each firm’s σ-algebra is generated by a partition of Ω that is given by Πi = {T−1

i (ω̃)|ω̃ ∈
Ωi}.

2Integrable means that
∫

Ω
|qi(Ti(ω))|dµ <∞.
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for all i ∈ N and almost all ω ∈ Ω.3

Throughout the paper, we assume:

(A) The cost function C is convex, twice continuously differentiable and there

are no fixed costs, meaning that C(0) = 0,

(B) Inverse demand P is nonincreasing and twice continuously differentiable,

(C) There exists Z <∞ such that qP(q)− C(q)≤ 0 for all q ≥ Z ,

(D) The marginal revenue of firm i is strictly decreasing with the aggregate

output of the other firms. This is equivalent to P ′(Q) + qi P
′′(Q) < 0 (the so-

called Novshek condition, see Vives (1999)). Notice that (B) and (D) imply

that P is strictly decreasing.

Remark 1. If µ
�

Ti ≥ Z
�

= 1, the model reduces to a standard form Cournot

oligopoly with complete information in which firms face the capacity constraint

Z, which is never exceeded due to assumption (C). In this case, assumptions (A)

and (D) ensure the existence of a unique equilibrium (Vives, 1999). Throughout

the paper, we denote the corresponding standard form Cournot oligopoly equilib-

rium quantity by qC and the corresponding best response function by r.4 Under

assumptions (A), (B) and (D), the best response r is twice continuously differen-

tiable and r ′ >−1 (Vives, 1999), meaning that production decisions are strategic

substitutes.

Remark 2. Assumptions (A), (B) and (D) ensure that the state-dependent payoff

function (1) is concave in the output of firm i. Moreover, concavity is inherited

by the expected payoff function (2) (Einy et al., 2010). If Ω is finite, then a firm’s

strategy space is compact and convex, and Nash’s theorem implies the existence

of an equilibrium.

Notice that we allow for negative prices in the model, which is arguable

from an economic point of view but which is helpful when it comes to proving

existence of equilibria. If demand is truncated where it intercepts the hor-

izontal axis in order to avoid negative prices, a firm’s payoff function is no
3See Harsanyi (1967-69) and Einy et al. (2002).
4Thus, we implicitly assume Z ≤ t̂, which is not a limitation.
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longer concave but only quasi-concave. This is not a problem in the complete

information case, however the argument for equilibrium existence may col-

lapse if we allow for incomplete information regarding the demand intercept.

In this case, the quasi-concavity of the state-dependent payoff function does

not necessarily translate into quasi-concavity of the expected payoff function

(Einy et al., 2010). The same is true in the case where firms have incom-

plete information regarding the other firms’ capacities and where demand is

truncated. In contrast, allowing for negative prices ensures that the expected

payoff function is concave.

4 Characterization of Equilibrium Strategies

First, we reconsider the case in which firms have asymmetric capacity con-

straints and share their information, meaning they are subject to complete in-

formation. The question of existence and uniqueness in this setting is treated

extensively in the literature, as previously mentioned. In terms of the model

formulation, we discuss the case where Ti(ω) = ω for all i and all ω. If de-

mand and costs are linear, then existence and uniqueness of an equilibrium

are easily obtained.

In the remainder of the paper, we denote the shared information equilib-

rium strategy by qS. For the duopoly case, the shared information equilibrium

strategy qS can be presented in a compact manner. As previously mentioned,

r denotes the best response function of the unrestricted Cournot duopoly.

qS(ω1,ω2) =







min
�

ω1, qC	 , ifω1 ≤ω2,

min
�

ω1, r
�

qS(ω2,ω1)
�	

otherwise.
(4)

It is easily demonstrated that qS is the unique equilibrium strategy. We use this

representation of qS in Section 5.
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Notice that if in an equilibrium there is a firm with a binding capacity re-

striction, the total output of the industry is lower compared to the output of

the standard form Cournot oligopoly. This property derives from the slope of

the best response function r – if one firm decreases its output due to its capac-

ity restriction, then the corresponding increase of the other firms is smaller.

In the private information setting, every firm perfectly learns its own ca-

pacity but receives no information about the other firms’ capacities. Speaking

in terms of the model, we analyze the case Ti(ω) = ωi. A strategy of firm i is

now a function on T . In the following, we write qi(t) instead of qi(Ti(ω)).
Theorem 1 states that an equilibrium strategy qi is completely determined

by qi( t̂) if the firms’ capacities are independent. That is, the relevant strategy

space is one-dimensional.

Theorem 1. If the firms’ capacities are stochastically independent, then in every

equilibrium q = (q1, q2, . . . , qn) and for every firm i the strategy qi is nondecreas-

ing. More precisely, for every i there exists a threshold si ∈ T such that qi(t) = t

for all t ≤ si and qi(t)< t for all t > si.

Proof. We assume that q is an equilibrium and choose i ∈ N arbitrarily. If

qi(t) = t for all t ∈ T , then the proposed statement follows. Therefore, we

denote si as the infimum of the set {t ∈ T |qi(t)< t}. If t, u ∈ T so that u> t >

si, we must have qi(u) = qi(t)< t since qi(t)maximizes the conditional payoff

expectation (3), which is concave, and because qi(t) lies in the inner of [0, t],
implying that qi(t) is the global maximum. Notice that either qi(t) = qi(s)< s

or s = qi(s)< qi(t).

The result of Theorem 1 is driven by the independence of T1, T2, . . . , Tn

and does not generally hold, as shown in the following example. We consider

a duopoly in which the inverse demand function is given by P(q) = 2 − q.

The set of possible capacity levels equals T = {0, 1,2}. We assume that µ is

symmetric, meaning that for all ω1,ω2

µ
�

T1 =ω1, T2 =ω2

�

= µ
�

T1 =ω2, T2 =ω1

�

.
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Moreover, we assume that µ
�

T1 = 0|T2 = 1
�

= 1 and µ
�

T1 = 2|T2 = 2
�

= 1.5

Then, the unique symmetric equilibrium is given by

q(0) = 0,

q(1) = 1,

q(2) = 2/3.

The equilibrium strategy is neither increasing nor decreasing. In fact, when

allowing for an arbitrary common prior belief, then we can say nothing about

the shape of the equilibria.

Recall that t̂ denotes the maximal element in T . Theorem 1 states that a

firm’s equilibrium strategy qi is completely determined by qi( t̂), since qi(t) =
min{t, qi( t̂)}. If we restrict the analysis to symmetric equilibria and assume

that the firms’ capacities are identically distributed, then the space of feasible

strategy profiles becomes one-dimensional. Next, we show that there exists

a unique symmetric equilibrium if the inverse demand function is concave.

We use two arguments in the proof: A fixed point argument applied to the

one-dimensional space of feasible strategy profiles described above and the

existence of a unique Cournot equilibrium in the unrestricted, standard form

Cournot oligopoly, characterized by a smooth best reply function (see Remark

1). In order to ease notation, we write r(q) instead of r((n − 1)q) if q is a

symmetric equilibrium strategy or quantity in the remainder of the paper.

Theorem 1 shows that a firm produces some constant output q( t̂) if the ca-

pacity level the firm is endowed with exceeds a certain threshold. In Theorem

2 we show that this constant output exceeds the Cournot quantity qC , but is

smaller than the monopoly quantity qM . We characterize q( t̂) via

qC < q( t̂) = r(λqC)< qM

5This specification of the conditional probabilities implies that firms have complete infor-
mation. However, this is just for convenience. We obtain similar results if we allow for the
conditional probabilities to be close to 1.
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for an appropriate 0< λ < 1.

Clearly, q( t̂) does not exceed the monopoly quantity, implying λ > 0. To

encourage intuition why q( t̂) exceeds the Cournot quantity, implying λ < 1,

we consider a duopoly in which inverse demand is given by P(q) = 1− q and

in which marginal costs are equal zero. Every firm’s capacity may take values

in T = {0, 1}, and each capacity level occurs with probability p = 1/2. If firm

1 is endowed with capacity 1, it maximizes

E
�

q1(1− q2− q1)
�

= q1(1− E
�

q2

�

− q1)

subject to q1 ≤ 1. We let r̃ denote the best response function of firm 1. At

equilibrium,

q1(1) = r̃(q2) =
1− E

�

q2

�

2
=

1− 1
2
q2(1)

2
,

because q2(0) = 0. Since q1(1) = q2(1) in a symmetric equilibrium, we obtain

q1(1) = 2/5> 1/3= qC . The equilibrium strategy is then

q1(t) =min {t, 2/5} ,

which may be written as

q1(t) =min
�

t, r
�

3

5
qC

��

.

In short, q1(1)≤ qC implies E
�

q1

�

< qC , so that

r(q2) = r(q1) = r(E
�

q1

�

> r(qC) = qC .
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Theorem 2. If capacities are i.i.d. and the inverse demand function is concave,

there exists exactly one symmetric equilibrium and the equilibrium strategy qP

satisfies

E
�

qP
�

≤ qC .

The inequality strictly holds if µ
�

Ti < qC�> 0.

Proof. We construct a symmetric equilibrium. Recall that firm i maximizes

E
�

ui
�

·, qi, q−i
��

= E
�

qi(Ti(·))P(Q(·))− C(qi(Ti(·)))
�

(5)

by choosing qi. For every t ∈ T and λ ∈R we define the strategy qλ by

qλ(t) =min
¦

t, r
�

λqC
�©

. (6)

Then, qλ(t) is continuous in λ since r is smooth (see Remark 1). We assume

that the other firms j 6= i apply qλ for some λ ∈ [0, 1] and define

Qλ−i(ω) :=
∑

j 6=i

qλ(T j(ω)).

to be the corresponding, realized aggregate output, which is nonincreasing

and continuous in λ. Consider the mapping φ :R2→R defined by

φ(λ, x) :=E
�

ui

�

·, x , qλ
��

=x E
�

P
�

Qλ−i(·) + x
��

− C(x).

Then φ is continuous in λ as well. Due to the assumptions placed on P and

C , the integrand

x P
�

Qλ−i(ω) + x
�

− C(x)

is strictly concave in x (see Remark 2) and this implies that φ is concave in x

as well. We let γ(λ) denote the global maximizer of φ(λ, ·). Then γ is strictly
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decreasing with λ because Qλ−i is strictly decreasing in λ,6 and this implies that

the maximizer γ must increase since we consider an oligopoly with strategic

substitutes.

We prove indirectly that γ is continuous: Assume that γ has a discontinuity

in µ. Then, since γ is nondecreasing, there exists an ε > 0 and a sequence

µn > µ converging to µ such that

γ(µn)− γ(µ)> ε (7)

for all n ∈ N . Because γ(µ) maximizes φ(µ, ·), which is strictly concave, we

conclude

φ(µ,γ(µ))> φ(µ,γ(µ) + ε).

Because the sequence µn converges to µ and φ is continuous in its first argu-

ment, we can choose n∗ large enough so that

φ(µn∗ ,γ(µ))> φ(µn∗ ,γ(µ) + ε).

This implies that γ(µn∗) < γ(µ) + ε, since φ is strictly concave in its second

argument (and thus continuous as well). But this yields

γ(µn∗)− γ(µ)< ε,

contradicting (7).

Next, we demonstrate that there exists λ > 0 such that γ(λ) = r(λqC) by

applying the intermediate value theorem. If λ = 0, then r(λqC) = r(0) = qM ,

where qM is the monopoly output. Clearly, we must have γ(0) < qM : γ(0) is

the maximizer of

x E
�

P
�

Q0
−i(·) + x

��

− C(x)).

6More precisely, there exists a set A⊂ Ω such that Qλ−i(ω) is strictly decreasing for almost
all ω ∈ A and constant almost everywhere on Ac . In a non trivial setting, µ (A) > 0, which is
sufficient because γ does only depend on the expected value of Q−i .
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Since the inverse demand function is concave by assumption, we may apply

Jensen’s inequality and obtain

E
�

P
�

Q0
−i(·) + x

��

≤ P
�

E
�

Q0
−i

�

+ x
�

< P(x),

meaning that the expected price is smaller than the monopoly price for any x ,

implying that γ(0)< qM .

Similarly, if λ = 1, then r(λqC) = r(qC) = qC , and γ(1) exceeds qC : The

expected price satisfies

E
�

P
�

Q0
−i(·) + x

��

≥ E
�

P
�

(n− 1)qC + x
��

= P
�

(n− 1)qC + x
�

,

implying that the expected price exceeds the price of the unrestricted Cournot

oligopoly for any x and further that γ(1) must exceed qC . Since both r and γ

are continuous, we conclude that there exists a λ as claimed. Notice that the

inequality above strictly holds if µ
�

Ti < qC�> 0.

Lastly, we denote r̃(t, ·) as the best response of the restricted oligopoly

when Ti = t, meaning that r̃ maximizes E
�

ui
�

·, x , q−i
��

subject to x ≤ t.

When q j = qλ for j 6= i, we obtain

r̃(t, qλ) =min
�

t,γ(λ)
	

=min
¦

t, r(λqC)
©

= qλ(t).

This shows that qλ is a fixed point of the best response function.

Ultimately, the result established in Theorem 2 stems from the fact that

production decisions are strategic substitutes in the model setting (see Remark

1). If a firm’s output is bounded with positive probability, then the remaining

firms (state-wise) do not fully compensate this lack of production. It is easily

verified that a similar result holds in the case complete information. Thus,

Theorem 2 is a natural analog to the complete information case.
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Remark 3. Notice that if demand is linear, it follows γ(λ) = r
�

E
�

qλ
��

. This

is because the expected payoff of firm i only depends on the expected aggregate

output of the other firms. Since γ(λ) = r(λqC) in the equilibrium, we conclude

E
�

qλ
�

= λqC .

Since a firm’s strategy is of the form qi(t) = min
�

t, qi( t̂)
	

, the strategy is

completely determined by its expected value, which is strictly increasing with

t̂. That is to say, a firm’s decision variables are one-dimensional and the best

response is of the form r̃(t,Q−) = min
�

t, r(Q−)
	

and thus depends only on

the aggregate output. Under these conditions, only symmetric equilibria can

exist if the slope of r̃ strictly exceeds −1.7 In our case, r ′ > −1 (see Remark

1) and in fact, r ′ > −1/2 when demand is linear. Conversely, Theorem 3 may

not hold if demand is not linear.

Theorem 3. If capacities are i.i.d. and demand is linear, then every equilibrium

is symmetric.

Proof. First, we give a proof for the duopoly case. Second, we argue why the

statement also holds true in an oligopoly. For an arbitrarily chosen equilibrium

q = (q1, q2) it is sufficient to show that E[q1] = E[q2] due to Theorem 1. We

define x := E[q1], y := E[q2] and

φ2(z) = E
�

u2

�

·, z, q1

��

= zP
�

E
�

q1

�

+ z
�

− C(z).

Clearly, φ2 is maximized by r
�

E
�

q1

��

= r(x) because the expected payoff

function of firm 2 does only depend on the expected quantity of firm 1 as a

result of the linearity of P.

We let f denote a marginal probability density with respect to Ti, meaning

that f is such that for all c ∈ T

µ
�

Ti ≤ c
�

=

∫ c

0

f (t)d t.

7See Vives (1999), p. 42–43, who discusses the complete information case.
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We write

y =E
�

min
�

T2, r(x)
	�

(8)

=

∫ r(x)

0

t f (t)d t +

∫ ∞

r(x)

r(x) f (t)d t (9)

=:g(x). (10)

Similarly, we conclude x = g(y).
Next, we demonstrate that g(x) = y and g(y) = x implies x = y , which

yields the given statement. The strategy is to show that g ′ >−1, implying that

g can not intersect a linear function with derivative −1 twice; however, this

is a necessary condition for the existence of x 6= y satisfying g(x) = y and

g(y) = x . We calculate8

g ′(x) =r ′(x)r(x) f (r(x)) + r ′(x)

∫ t̂

r(x)

f (t)d t − r(x)r ′(x) f (r(x))

=r ′(x)µ
�

Ti ≥ r(x)
�

>−1. (11)

We suppose that there exist 0 ≤ x < y such that g(x) = y and g(y) = x .

We define the linear function h by h(z) = x + y − z. Then h(x) = y and

h(y) = h(h(x)) = x . On one hand, this implies that h intersects g at x and y ,

so that

g(x)− h(x) = g(y)− h(y) = 0. (12)

On the other hand, g ′ − h′ > 0, implying that g − h is strictly increasing – a

contradiction to (12).

It is important to notice that the proof does not rely on the demand func-

tion parameter a and b. This implies that for the oligopoly case we can define

ã = a− b
∑

j>2 E[q j(T j)] and apply the duopoly result to the residual demand

8If the common prior belief is discrete, then g is piecewise linear and thus differentiable
almost everywhere.
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function defined by ã (which is the same for both firm 1 and firm 2). Equiva-

lently speaking, we proved that the firms’ strategies are pair wise identical for

any a, which is sufficient to prove the statement for the oligopoly case.

The result is driven by by the linearity of the demand function: If demand

is linear, then the best response function of a firm does only depend on the

expected output of the other firms. Thus, the maximizer of a firm’s payoff

function inherits the slope of the Cournot best response r to some extent (see

equation (11)).

Lastly, Theorem 3 implies the existence of a unique symmetric equilibrium

in the linear case: g has exactly one fixed point, and the fixed points of g

correspond to symmetric equilibria. Figure 1 shows the symmetric equilibrium

of the oligopoly for the case in which demand is linear and the common prior

belief is discrete and uniformly distributed.

5 Information Sharing

We discuss the effects of information sharing on producer surplus, consumer

surplus and social welfare. We consider the two extreme cases in which in-

formation is not shared at all, the private information equilibrium, and where

firms commit ex-ante to an industry-wide information sharing agreement, e.g.

via some trade association, the shared information equilibrium. We find that

even in simple examples, the impact on both consumer and producer surplus

is ambiguous. This ambiguity is driven by the concavity of the firms’ payoff

function and by the covariance of firms’ equilibrium outputs. For a large class

of examples, social welfare increases. However, we provide an example where

social welfare decreases.

In the following, we discuss a simple duopoly. The common prior belief is

discrete and there are two possible capacity levels t L < tH that may each occur

with probability p = 1/2. The symmetry of the common prior belief is just for

convenience – the results are not driven by this assumption. Without loss of
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Figure 1: The unique symmetric equilibrium when capacities are stochastically
independent and uniformly distributed (a = 1, b = 1, c = 0, n= 6, t̂ = 0.25,
|T |= 11, λ= 0.83).
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generality, we assume that costs equal zero and that inverse demand equals

p(q) = a − q.9 To avoid trivialities, we assume throughout the analysis that

t L ≤ qC , which is equivalent to a ≥ 3t L. In the limiting case a = 3t L the model

reduces to a standard form Cournot duopoly in which both firms produce their

Cournot quantity in both the private and shared information equilibrium.

Moreover, we assume that tH is sufficiently large, meaning that tH exceeds

the monopoly output. This assumption simplifies the analysis, but we are still

able to demonstrate the ambiguous effects on producer and consumer surplus.

In contrast, under this assumption, social welfare increases when information

is shared.

In this model specification we obtain (see Remark 3)

t L < E
�

qP
�

< r
�

E
�

qP
��

.

This leads to

E
�

qP
�

= pt L + pr
�

E
�

qP
��

.

Substituting p = 1/2 and solving for E
�

qP� yields

E
�

qP
�

=
2

5
t L +

3

5
qC =

2

5
t L +

1

5
a, (13)

r
�

E
�

qP
��

=
6

5
qC −

1

5
t L =

2

5
a−

1

5
t L. (14)

We can see that the model becomes trivial if a = 3t: In this case, we obtain

qC = t = E
�

qP�.

9If c > 0, we define ã = a− c; if b 6= 1, we define a = ã/b. The payoff function of the case
b 6= 1 is then a scaled version of the payoff function arising when demand equals a− q. The
same holds for consumer surplus.
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5.1 Producer Surplus

Since both the shared and the private information equilibria are symmetric,

firms have an incentive to share their information if and only if sharing infor-

mation increases producer surplus (PS). Producer surplus equals the expected

profit of the industry. Thus, firms have an incentive to share their information

if the difference

E [∆PS] := 2E
�

ui

�

·, qS, qS
��

− 2E
�

ui

�

·, qP , qP
��

exceeds zero.

Information sharing may (ex-post) lead to losses for firm i if and only if

its capacity restriction is binding and the capacity restriction of firm 2 is not

binding in the private information equilibrium, allowing firm 2 to increase its

output when learning that firm 1 produces little, and the other way round.

If both firms’ capacity restriction are not binding, then sharing information

induces both firms to decrease outputs and thus increases profits. The net

effect depends on the demand intercept a.

We derive the effects of information sharing on producer surplus by an-

alyzing the possible states of nature separately. Ex-post, information shar-

ing leads to losses for firm 1 if and only if ω1 = t L and ω2 = tH . In this

case, firm 2 produces r
�

E
�

qP�� in the private information equilibrium and

r(t L) > r
�

E
�

qP�� in the shared information equilibrium, whereas the out-

put of firm 1 remains constant. If we combine the events (t L, tH) and (tH , t L)
and multiply the expected difference of a firm’s payoff by 2, the decrease in

producer surplus arising from asymmetric capacities PS−(a) equals

PS−(a) = 2t L

�

a− r
�

E
�

qP
��

− t L

�

−2t L
�

a− r(t L)− t L
�

= t L(E
�

qP
�

− t L).
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Via (13) and (14) we calculate

PS−(a) =
1

5
at L − 5

t2
L

and
∂

∂ a
PS−(a) =

1

10
t L. (15)

Thus, PS− is linear and increasing. Clearly, if a = 3t L, then PS−(a) = 0.

Next, we examine two constellations that ex-post lead to an increase in

producer surplus. The first is the counterpart of PS−: If firm 1 is endowed

with tH and firm 2 is endowed with t L, then firm 1 produces r
�

E
�

qP�� in the

private information equilibrium and r(t L) in the shared information equilib-

rium. The output of firm 2 equals t L in both equilibria. Again, we combine

the events (t L, tH) and (tH , t L) and we denote the increase in producer surplus

(when capacities are asymmetric) by PS+1 (a):

PS+1 (a) = 2r(t L)
�

a− t L − r(t L)
�

− 2r
�

E
�

qP
���

a− t L − r
�

E
�

qP
���

.

The expression PS+1 has a zero at a = 3t L. A straightforward calculation shows

that
∂

∂ a
PS+1 (a) =

4

25
a−

12

25
t L. (16)

This implies that PS+1 is a parabola that has a local minimum at a = 3t L.

Finally, both firms benefit (ex-post) from sharing information ifω1 =ω2 =
tH . In this case, both firms reduce their output to the Cournot quantity qC

when information is shared. The corresponding increase in producer surplus

is denoted by PS+2 and given by

PS+2 (a) = 2qC(a− 2qC)− 2r
�

E
�

qP
��

(a− 2r
�

E
�

qP
��

).
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Again, PS+2 (3t L) = 0. Moreover, a calculation shows that

∂

∂ a
PS+2 (a) =

140

1125
a−

6

25
t L. (17)

Since
∂

∂ a
PS+2 (3t L) =

2

15
t L > 0,

PS+2 is increasing as long as a ≥ 3t L.

All three events (tH , t L), (t L, tH) and (tH , tH) occur with probability p2,

leading to

E [∆PS] (a) =

p2

�

1

2
PS+1 (a)−

1

2
PS−(a)

�

+ p2

�

1

2
PS+1 (a)−

1

2
PS−(a)

�

+ p2PS+2 (a)

=p2
�

PS+1 (a) + PS+2 (a)− PS−(a)
�

.

Using (15), (16) and (17), we obtain

∂

∂ a
E [∆PS] (3t L) =p2 ∂

∂ a

�

PS+1 (3t L) + PS+2 (3t L)− PS−(3t L)
�

=p2

�

0+
2

15
t L −

2

10
t L

�

< 0.

On one hand, since E [∆PS] (3t) = 0 and ∂ /∂ aE [∆PS] (3t) < 0, we

conclude that E [∆PS] (a)< 0 if a is sufficiently small, meaning that firms do

not have an incentive to share their information.

On the other hand, calculating the second derivative shows that

∂ /∂ 2aE [∆PS]> 0.

This stems from the fact that PS− is linear and implies E [∆PS] (a) > 0 when

a is sufficiently large. Thus, we have established:
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Theorem 4. If the demand intercept is sufficiently large, then firms have an

incentive to exchange information.

The result is driven by the concavity of the firms’ payoff function. Consider

that capacities are asymmetric and that T1 = t L, T2 = tH . Then firm 1 ex-post

suffers from information sharing due to the price effect when firm 2 increases

output, and theses losses are linear with respect to a. Conversely, firm 2 is

subject to a price effect and a quantity effect. If a is large, then the quantity

effect gains weight in a convex fashion, i.e. the marginal revenue of firm 2 is

high (and vice versa).

5.2 Consumer Surplus

We let Q(ω, qP) and Q(ω, qS) denote the realized total output of the industry

in the private information and shared information equilibria, respectively. We

use Q2(ω, qP)/2 and Q2(ω, qS)/2 as a measure for consumer surplus. Shar-

ing information leads to an increase in consumer surplus if and only if the

expected difference

E [∆CS] =
1

2
E
�

Q2(·, qS)
�

−
1

2
E
�

Q2(·, qP)
�

(18)

is positive.

Before we analyze the impact on consumer surplus, it is instructive to an-

alyze the net quantity effect arising from information sharing. As performed

in the last section, we can identify the states of nature that lead to a decrease

or an increase of total output. A decrease can only occur if both firm 1 and

firm 2 are endowed with tH . We denote this quantity effect by Q−. In this

case, both firms produce r
�

E
�

qP�� in the private information equilibrium

and qC < r
�

E
�

qP�� in the shared information equilibrium. An increase, de-

noted by Q+, occurs if both firms are endowed with different capacity levels:

If firm 1 is endowed with t L, then its outputs in both equilibria coincide. Firm

23



2 increases its output by r(t L)− r
�

E
�

qP��. Notice that the same increase of

output occurs if ω= (tH , t L).
The decrease in output (ex-post) amounts to

Q− = 2r
�

E
�

qP
��

− 2qC = qC − E
�

qP
�

=
2

15
a−

2

5
t L.

The increase of output (ex-post), multiplied by 2, is given by

2Q+ = 2
�

r(t L)− r
�

E
�

qP
���

= E
�

qP
�

− t L =
1

5
a−

3

5
t L.

Both the increase and the decrease of output equal zero if a = 3t L, as expected.

Apparently, the expected difference of total output exceeds zero as long as

a > 3t L:

E [∆Q] = p2Q++ p2Q+− p2Q− =
p2

15
a−

p2

5
t L.

That is to say, sharing information always leads to an increase in expected out-

put. This stems from the fact that equilibrium strategies are concave. Shapiro

(1986) finds that in the presence of uncertain costs and linear equilibrium

strategies, a firm’s output does not change when information is shared.

Moreover, the variance of a firm’s output increases. By applying (13), we

see that the increase in the output of firm 1 when firm 2 is endowed with t L

exceeds the decrease in output of firm 1 when firm 2 is endowed with tH :

�

qS(tH , t L)− qP(tH)
�

−
�

qP(tH)− qS(tH , tH)
�

=r(t L)− r
�

E
�

qP
��

− r
�

E
�

qP
��

+ r
�

qC
�

=
1

15
a−

1

5
t L ≥ 0 (19)

if and only if a ≥ 3t L. Since the output of firm 1 remains constant when en-

dowed with t L and since qS(tH , t L) exceeds qP(tH), the variance of outputs of

firm 1 increases due to information sharing. Because equation (19) increases

with a, the increase of variance, in turn, increases with a.
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In order to examine consumer surplus, we calculate the realized consumer

surplus of the shared information equilibrium when both firm 1 and firm 2 are

endowed with tH :

CSS(a, tH , tH) =

�

2qC�2

2
=

2

9
a2.

For the private information equilibrium, we find

CSP(a, tH , tH) =

�

2r
�

E
�

qP���2

2
=

2

25

�

4a2− 4at L + t2
L

�

.

The (ex-post) decrease in consumer surplus when both firms are endowed

with tH is then

CS−(a) = CSP(a, tH , tH)− CSS(a, tH , tH) =
2

25

�

11

9
a2− 4at L + t2

L

�

.

Similarly, if both firms have different capacity levels, we calculate the cor-

responding consumer surplus for both the shared and the private information

equilibrium:

CSS(a, t L, tH) =

�

t L + r(t L)
�2

2
=

1

8

�

a2+ 2t La+ t2
L

�

and

CSP(a, t L, tH) =

�

t L + r
�

E
�

qP���2

2
=

2

25

�

a2+ 4at L + 4t2
L

�

.

The (ex-post) increase in consumer surplus when firms have asymmetric ca-

pacities is then

CS+(a) = CSS(a, t L, tH)− CSP(a, t L, tH) =
1

25

�

9

8
a2−

7

4
at L −

39

8
t2

L

�

.

Since an increase in consumer surplus occurs in two states of nature, we may
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write

E [∆CS(a)] = 2p2CS+(a)− p2CS−(a).

Thus, it is sufficient to analyze the difference 2CS+−CS− in order to determine

the sign of E [∆CS] (a). Note first that both CS+ and CS− have a zero at

a = 3t.

Differentiating with respect to a yields

2
∂

∂ a
CS+(a) =

2

25

�

9

4
a−

7

4
t L

�

and
∂

∂ a
CS−(a) =

2

25

�

22

9
a− 4t L

�

.

Evaluating at a = 3t shows

2
∂

∂ a
CS+(3t L) =

30

75
t L >

20

75
t L =

∂

∂ a
CS−(a).

On one hand, this implies that E [∆CS(a)] is positive when a is sufficiently

small. On the other hand, calculating the second derivative yields

2
∂

∂ 2a
CS+(a) =

9

100
<

22

225
=
∂

∂ 2a
CS−(a).

This implies that E [∆CS] (a) is negative when a is sufficiently large. We have

established:

Theorem 5. If the demand intercept is sufficiently small, then information shar-

ing increases consumer surplus.

Ultimately, the result is due to the negative correlation of equilibrium out-

puts in the complete information case. This correlation effect decreases the

variance of total industry output, which in turn lowers consumer surplus.

When increasing a, the negative correlation of equilibrium outputs increases.

If q(T1) + q(T2) denotes the total industry output, we observe
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E
�

�

q(T1) + q(T2)
�2�

=VAR
�

q(T1) + q(T2)
�

+ E
�

q(T1) + q(T2)
�2 (20)

=2VAR
�

q(T1)
�

+ 2COV
�

q(T1), q(T2)
�

+ E
�

q(T1) + q(T2)
�2 . (21)

As discussed on page 24, both expected output and variance of output of a

single firm increase when information is shared. Theorem 5 and equation (20)

imply that the variance of total industry output must decrease if a is sufficiently

large. Lastly, equation (21) shows that the decrease of the variance of total

industry output driven by a negative correlation of equilibrium outputs.

Apparently, we can easily construct an example in which firms do not have

an incentive to share information but consumers nevertheless profit from an

information sharing agreement, shown by choosing a sufficiently small a. Sim-

ilarly, an example in which firms do have an incentive to share information,

but the sharing of information in turn decreases consumer surplus, is easily

obtained by choosing a sufficiently large a.

The example presented in Table 1 shows that we can choose a such that

both producer and consumer surpluses increase, a result that is not implied

by the analysis conducted above. We choose a = tH = 5 and t L = 1, implying

r
�

E
�

qP��= 9/5.

5.3 Social Welfare

Finally, we look at the expected change of social welfare, given by

E [∆W (a)] =E [∆PS(a)] + E [∆CS(a)]

=E
�

PS+1 (a) + PS+2 (a)− PS−+ 2CS+(a)− CS−(a)
�

.

Using the results previously established and differentiating with respect to a

show that E [∆W (a)] is a quadratic function that has a zero at a = 3t L and is
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Table 1: Equilibrium outputs for private (P) and shared (S) information equilibrium and
effects on surplus and welfare (a = 5, T = {1, 5},µ is uniformly distributed on T 2, implying
r
�

E
�

qP��= 9/5= 1.8).

ω Output P. surplus C. surplus Welfare
P S P S P S P S

(1,1) 1.00 1.00 6.00 6.00 2.00 2.00 8.00 8.00
(1,5) 1.00 1.00 4.40 4.00 3.92 4.50 8.32 8.50
(5,1) 1.80 2.00 7.92 8.00 3.92 4.50 11.84 12.50
(5,5) 1.80 1.67 5.04 5.56 6.48 5.56 11.52 11.11

Expected Values 1.40 1.42 5.84 5.89 4.08 4.14 9.92 10.03
Variances 0.21 0.25 2.36 2.72 3.38 2.28 4.16 4.58

increasing as long as a ≥ 3t L. This implies that information sharing increases

social welfare.

Lastly, we demonstrate that social welfare may decrease if tH is sufficiently

small. We discuss an example in which tH = r
�

E
�

qP��. This implies that

firms can never increase their outputs when moving from the private to the

shared information equilibrium. The (ex-post) decrease in output that occurs

when ω = (tH , tH) is not affected as long as tH ≥ r
�

E
�

qP��. Thus, both

consumer surplus and social welfare decrease with tH . Table 2 shows the

equilibrium output and the corresponding surplus and welfare effects when we

modify the example presented in Table 1 by defining tH = r
�

E
�

qP��= 9/5.

Remark 4. All results established in this section hold when we conduct the anal-

ysis in terms of t L and keep the demand intercept constant. By lowering t L, we

increase the variance of µ. Theorem 4 implies that we can choose t L small enough

that firms have an incentive to share their information. This result is complemen-

tary to the results established by Maleug and Tsutsui (1998), who show that firms

have an incentive to share their information if the variance of the common prior

belief is sufficiently large.
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Table 2: Equilibrium outputs for private (P) and shared (S) information equilibrium when
tH = r

�

E
�

qP��= 1.8.

ω Output P. surplus C. surplus Welfare
P S P S P S P S

(1,1) 1.00 1.00 6.00 6.00 2.00 2.00 8.00 8.00
(1,1.8) 1.00 1.00 4.40 4.40 3.92 3.92 8.32 8.32
(1.8,1) 1.80 1.80 7.92 7.92 3.92 3.92 11.84 11.84
(1.8,1.8) 1.80 1.67 5.04 5.56 6.48 5.56 11.52 11.11

Expected Values 1.40 1.37 5.84 5.97 4.08 3.85 9.92 9.82
Variances 0.21 0.18 2.36 2.15 3.38 2.11 4.16 3.77

6 Concluding Remarks

In the presence of uncertainty with respect to production capacities, equilib-

rium strategies are concave if capacities are stochastically independent. If

firms are symmetric, a unique equilibrium exists. When inverse demand is lin-

ear, the best reply of a firm only depends on the expected output of the other

firms, ensuring that every equilibrium is symmetric because output decisions

are strategic substitutes.

Consistent with the literature, we find that capacity constraints can re-

verse standard results on information sharing. These results are established

by discussing a Cournot duopoly in which the common prior belief is discrete

and there exist two capacity levels t L < tH such that tH is sufficiently large.

Due to the concavity of equilibrium strategies, information sharing leads to

an increase in the expected aggregate output of the industry. Moreover, the

variance of each firm’s output increases with the horizontal demand intercept

a when information is shared. However, the variance of total industry might

decrease when information is shared, which is due to the negative correla-

tion of the firms’ equilibrium outputs. The net effect can lead to an increase

as well as to a decrease in producer surplus. The same is true for consumer

surplus, which can decrease when information is shared although total output
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increases. However, social welfare increases when information is shared due

to the sufficiently large value of tH . This effect can be reversed by choosing tH

small enough.

The question as to whether antitrust authorities should either encourage

firms to share information or if they should prohibit information exchange

can not be answered clearly for two reasons. First, we needed to specify the

weights an authority assigns to producer surplus and consumer surplus. In

case an authority relies on social welfare as the appropriate measure, sharing

information is beneficial for a large class of markets. In case an authority

emphasizes consumer surplus, the question as to whether information should

be shared depends on the market parameters.

One can think of a number of possible applications of the model. Consider,

for example, two markets A and B, where market prices PA and PB are com-

mon knowledge. If the markets are physically separated, firms who possess

transport capacity may take advantage of arbitrage profits. If we assume that

the price difference P := PA− PB is positive and decreasing in the quantity q

bought on market B and sold on market A, we can perceive the problem as a

Cournot oligopoly with capacity constraints. These capacity constraints may

be unknown: Consider that A and B are two market places for natural gas

that are connected via Liquefied Natural Gas (LNG) carriers. Since firms do

not know their rival’s operation strategies, they do not know the amount of

carriers that are available to serve the route between A and B.

The model is limited to the case of stochastically independent capacities.

However, the assumption on independence might not be reasonable in markets

where the uncertainty is driven by a common source of risk. In particular, local

markets for agricultural products do not satisfy the assumption of independent

signals, since the firms’ harvest is determined by local weather conditions.

However, independent capacities might be a suitable approximation.
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