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Spatial dependencies of wind power and interrelations with
spot price dynamics

Christina Elberga, Simeon Hagspiela

aInstitute of Energy Economics, University of Cologne, Vogelsanger Strasse 321, 50827 Cologne, Germany

Abstract

Wind power has seen strong growth over the last decade and increasingly affects electricity spot
prices. Generation from wind energy is stochastic, and if there is lot of wind, prices tend to be
lower. Therefore, for an investor, but also for the whole electricity system, it is important to assess
the value of wind power at different locations. In this paper, we develop a stochastic simulation
model that captures the full spatial dependence structure of wind power by using copulas, incorpo-
rated into a structural supply and demand based model for the electricity spot price. This model
is calibrated with German data. We find that the specific location of a turbine – i.e., its spatial
dependence with respect to the aggregated wind power in the system – is of high relevance for its
value. Many of the locations analyzed show an upper tail dependence that adversely impacts the
market value. Therefore, a model that assumes a linear dependence structure would systematically
overestimate the market value of wind power in many cases. This effect becomes more important
for increasing levels of wind power penetration and may render the large-scale integration into
markets more difficult.
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1. Introduction

The amount of electricity generated by wind power plants has increased significantly during

recent years. Due to the fact that wind power is stochastic, its introduction into power systems

caused changes in electricity spot price dynamics: they have become more volatile and exhibit a

correlated behavior with wind power fed into the system. In times of high wind infeed, spot prices

are observed to be generally lower than in times with low production of wind power. Empirical

evidence of this effect has been demonstrated for different markets characterized by high wind

IWe would like to thank Oliver Grothe and Felix Höffler for helpful comments and suggestions. This is an updated
version of the working paper published in June 2013.
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power penetration, e.g., by Jónsson et al. (2010) for Denmark, Gelabert et al. (2011) for Spain,

Woo et al. (2011) for Texas or Cutler et al. (2011) for the Australian market. Due to the cost-free

availability of wind energy, wind power plants are characterized by marginal costs of generation that

are lower than for other types of power plants such as coal or gas. Hence – if the wind blows – wind

power generation may replace other types of generation and thus lead to lower spot market prices in

such hours. As a consequence, power plants are faced with increasingly difficult conditions and an

additional source of price risk when participating in the market. Until now, fluctuating renewable

energy technologies (including wind power itself) have often been exempted from this price risk

by support mechanisms (e.g., by fixed feed-in-tariff systems) in order to incentivize investments.1

However, their price risk draws more and more attention as they make up an increasing share

of the generation mix and may at some point be fully integrated in the liberalized power market.

Therefore, for an individual investor as well as for a social planner it becomes increasingly important

to understand the value of wind generation and how it depends on the location of the wind turbine.

The purpose of this paper is to derive revenue distributions and the market value of wind at

specific locations, i.e., the weighted average spot price wind power is able to achieve when selling its

electricity on the spot market. It is clear that the value of a specific location depends on whether

it can typically produce only in hours where many other wind generators at other locations can

also produce, or not. To capture the full stochastic dependence structure of wind infeed we use

copulas, and incorporate the stochastic wind generation in a structural supply and demand based

model for electricity prices. We calibrate the model with German data, since Germany already has

a high share of wind power.

We find that taking into account the entire spatial dependence structure is indeed necessary,

and that considering only correlations between a specific turbine and the aggregate wind production

would be misleading. Even if the correlation of a specific turbine is lower compared to another,

the resulting market value may be lower due to a non-linear, asymmetric dependence structure.

In fact, we find a pronounced upper tail dependence that adversely impacts the market value for

many of the locations analyzed. Therefore, a model solely based on linear dependence measures

would systematically overestimate the market value of wind power in many cases. Moreover, it is

shown that this effect becomes increasingly important for higher levels of wind power penetration.

To derive these results, we need to take the following two steps. In a first step, we develop

a stochastic simulation model for electricity spot prices that incorporates the aggregated wind

power infeed as one of the determinants. Electricity spot prices are very volatile and follow daily,

weekly and seasonal patterns due to a very price-inelastic fluctuating demand and limited storage

possibilities. The market is designed such that in a competitive environment, suppliers who can

offer electricity at lowest marginal generation costs will cover the demand. Hence, an increasing

1For a comprehensive overview of different renewable support mechanisms including their economic implications,
e.g., refer to Green and Yatchew (2012).
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demand comes along with the need for capacities characterized by higher marginal generation costs

and generally leads to higher electricity prices. Since the marginal costs of wind power production

are close to zero, available production quantities will always cover some part of the demand as

long as prices are non-negative. The supply curve representing all available generation capacities

ranked in ascending order of their short-run marginal costs of production is often referred to as

the so called ’merit order’. In our model, we implicitly approximate the merit order by estimating

an empirical function from hourly spot prices, demand and wind power. We then feed the price

formation process with aggregated wind power series, and add a stochastic component in order

to cover additional stochastic price movements, caused, e.g., by unplanned power plant outages,

scarcity prices, speculation, or demand side management.

In the second step, we link the market’s aggregated wind power to the wind power of single

turbines in order to quantify their market value and the revenues depending on their specific

location. We use copulas to model this interrelation. Why copulas are necessary is illustrated

by the following thought experiment. There are two turbines A and B characterized by equal

availability factors and equal correlation coefficients between their own infeed and the aggregated

infeed of the turbines in the market. Turbine A follows the production pattern of all other turbines

very closely at low infeed levels but is much less dependent at high infeed levels, and can therefore

realize high prices when producing at full power. In contrast, turbine B faces the adverse situation

of having a particularly high probability that every time it runs at full power, a large share of all

the other turbines in the system is also running (i.e., a high correlation in the upper tail). Hence,

weighted average prices gained by turbine B will be lower.

Our paper contributes to three lines of literature. First, our paper builds on the literature on

structural demand and supply models. Within this class of models, Bessembinder and Lemmon

(2002) were among the first to study the importance of demand and production costs for elec-

tricity prices. They develop a theoretical model for electricity derivatives and show that the level

and variance of the electricity demand impact the forward premium. Motivated by these theoret-

ical foundations, Longstaff and Wang (2004) provide empirical evidence for a significant forward

premium in the PJM market. Barlow (2002) presents a different approach to model electricity

prices based on an Ornstein-Uhlenbeck model for the demand process and a functional dependence

between prices and demand. The model developed by Burger et al. (2006) follows the same con-

ceptual approach by including a non-linear functional dependence of the electricity spot price on

a stochastic demand process as well as a long-term non-stationarity. Their model is used to price

derivatives via Monte Carlo simulation. Howison and Coulon (2009) deploy a stochastic electricity

bid stack, i.e., detailed information on the supply curve. They further extend the number of state

variables explaining the electricity spot price by including fuel prices. We extend this literature by

including stochastic production quantities due to weather phenomena (e.g., wind) that may impact

the supply side and hence electricity prices.

Secondly, we build on the literature using copulas. Copulas have first been identified by Pa-

3



paefthymiou (2006) to be a suitable tool in modeling multivariate dependencies of wind power.

Grothe and Schnieders (2011) model spatial dependencies of wind speeds in order to allocate

wind farms in Germany such that an optimal reduction of power output fluctuations is achieved.

Hagspiel et al. (2012) model European wind power based on copula theory and use the simulated

data as an input for a probabilistic load flow analysis. In contrast to the existing literature, we

apply conditional copulas to model the dependence structure between specific turbines and the

aggregated wind power. The latter in turn is needed as an input for the spot price model.

Finally, our paper complements ongoing research on the valuation of power generation assets.

So far, this line of research has mainly focused on conventional power (e.g., Thompson et al. (2004),

Porchet et al. (2009) or Falbo et al. (2010)) and the optimization of hydro power schedules (e.g.,

Garćıa-González et al. (2007) or Densing (2013)). Also, a number of papers have valued wind

power based on historical data (e.g., Green and Vasilakos (2012)). However, we know of no study

presenting a model that fully captures the stochastics of wind power and interrelations with spot

price dynamics.

The remainder of this article is organized as follows: Section 2 provides a short introduction

to copula modeling with a particular focus on conditional copula sampling which we apply in our

model. The model itself is presented in Section 3. Section 4 reports the results of the methodology

applied to the case of wind power in Germany, namely the revenues and the market value of specific

wind turbines. Section 5 concludes.

2. Stochastic dependence modeling using copulas

In this section, we briefly discuss the modeling of stochastic dependencies with the help of

copulas. A more detailed introduction is provided e.g., in Joe (1997) or Nelsen (2006). For

a comprehensive literature review of the current status and applications of copula models, the

interested reader is referred to Genest et al. (2009), Durante and Sempi (2010) and Patton (2012).

2.1. Copulas and copula models

A copula is a cumulative distribution function with uniformly distributed marginals on [0, 1].

Sklar’s theorem is the main theorem for most applications of copulas, stating that any joint dis-

tribution of some random variables is determined by their marginal distributions and the copula

(Sklar (1959)). The bivariate form of Sklar’s theorem is as follows: For the cumulative distribu-

tion function F : R2 → [0, 1] of any random variables X,W , with marginal distribution functions

FX , FW , there exists a copula C : [0, 1]2 → [0, 1] such that

F (x,w) = C (FX(x), FW (w)) . (1)
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The copula function is unique if the marginals are continuous.2 Conversely, if C is a copula and FX

and FW are continuous distribution functions of the random variables X,W , then (1) defines the

bivariate joint distribution function. From Sklar’s theorem, it follows that copulas can be applied

with any marginal distributions. Particularly, marginal distributions may differ for each of the

random variables considered.

In our application we are interested in the dependence structure of the market’s aggregated

wind power W and a single turbine’s wind power X. The copula captures the complete dependence

structure of X and W . The selection of an appropriate copula model can be made independent from

the choice of the marginal distribution functions. Taking advantage of this, the joint distribution

of W and X is determined in a two stage process: First, the marginal distribution functions FW

and FX are determined, followed by the selection of the most appropriate copula model.

Copula functions are mostly determined in a parametric way. There are different types of para-

metric copula models that can be used to capture the pairwise dependence. In many applications –

such as ours – it is particularly important to differentiate between symmetric or asymmetric, tail or

no tail, and upper or lower tail dependence structures. Therefore, one can test several parametric

copula models that are able to capture these characteristics: The Gaussian copula is symmetric

and has zero or weak tail dependence (unless the correlation is 1). In contrast, the symmetric

Student-t copula has a relatively strong symmetric tail dependence. Whereas the Frank copula

is another symmetric copula with particularly low tail dependence, Clayton and Gumbel copulas

incorporate an asymmetric tail dependence. Lower tail dependence is captured by the Clayton

copula, while the Gumbel copula incorporates an upper tail dependence.3 These copulas are listed

in Table 1.4

Table 1: Copula models

Copula family Copula function C (u, v)

Gaussian ΦΣ

(
Φ−1(u),Φ−1(v)

)
Student-t tΣ,ν

(
t−1
ν (u), t−1

ν (v)
)

Clayton
(
max

{
u−θ + v−θ − 1, 0

})−1/θ

Frank −1
θ ln

(
1 +

(e−uθ−1)(e−vθ−1)
e−θ−1

)
Gumbel e−((− ln(u))θ+(− ln(v))θ)

1/θ

2Sklar’s theorem also holds for the multivariate case of n > 2 dimensions.
3Gaussian and Student-t copulas belong to the group of Elliptical copulas, whereas Frank, Gumbel and Clayton

copulas belong to the group of Archimedian copulas. For a more extensive discussion of different copula families,
see, e.g., Nelsen (2006)

4u and v can be interpreted as FX (x) and FW (w), respectively. ΦΣ denotes the multivariate normal distribution
function with covariance matrix Σ and tΣ,ν the multivariate Student-t distribution with ν degrees of freedom and
covariance matrix Σ.
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The copula parameters can be estimated based on observed data by optimizing the log-likelihood

function:

θ̂ = max
θ

∑
t

ln c (FX (xt) , FW (wt) ; θ) (2)

where θ denotes the parameter vector and c the copula density. The selection of the most appro-

priate copula model can then be determined based on the Akaike Information Criteria (AIC).

2.2. Conditional copula and simulation procedure

Like any ordinary joint distribution function, copulas have conditional distribution functions.

The conditional copula can be calculated by taking first derivatives with respect to each variable,

i.e., for u = FX(x) and v = FW (w) we have

C(u|v) =
∂C(u, v)

∂v
and C(v|u) =

∂C(u, v)

∂u
. (3)

For the application presented in this paper, there is one inherent advantage of using conditional

copulas rather than sampling directly from the bivariate copula distribution: Samples can be

conditioned on time series that may serve as inputs to the simulation procedure.5 The time series

characteristics can thus be preserved during the simulation process.

We consider the stochastic processes (Xt)t∈N and (Wt)t∈N. FXt(Xt), FWt(Wt) are uniformly dis-

tributed random variables on [0, 1]. For random variables Ut, Vt ∼ U (0, 1), F−1
Xt

(Ut) and F−1
Wt

(Vt)

thus follow the distributions of Xt and Wt, respectively. It is important to notice that by applying

the inverse distribution functions, the dependence structure is not influenced, i.e., Ut and Vt as

well as FXt(Xt) and FWt(Wt) have the same copula C.

The conditional sampling procedure can be summarized as follows:

1. Apply the marginal distribution function FWt to the time series of the market’s aggregated

wind power (w1, w2, w3, ...) in order to get (v∗1, v
∗
2, v
∗
3, ...).

2. Simulate (u1, u2, u3, ...) from independent uniformly distributed random variables.

3. For each observation FWt (wt) = v∗t , apply the inverse conditional copula

C−1
FWt (Wt),FXt (Xt)

(·|v∗t ) to translate ut into u∗t by:

u∗t = C−1
FWt (Wt),FXt (Xt)

(ut|v∗t ) (4)

4. Apply the inverse marginal distribution functions to (u∗1, u
∗
2, u
∗
3, ...) in order to obtain the cor-

responding simulations of the random variable

Xt:
(
F−1
X1

(u∗1) , F−1
X2

(u∗2) , F−1
X3

(u∗3) , ...
)

.

5We use time series of the market’s aggregated wind power as an input variable for the spot price model.
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3. The Model

The main goal of our quantitative analysis is to simulate the power generation of a single

turbine and simultaneous spot prices. These two quantities enable us to analyze the price effect

of wind power as it is realized by single turbines and hence to determine the respective market

value. To this end, we develop a stochastic simulation model for the single turbine wind power and

electricity spot prices, including a precise representation of their interrelations. The interrelation is

established by the aggregated wind power that is related to both the electricity spot prices as well

as the single turbine wind power. Hence, we set up a model that represents these two relationships:

First, a structural supply and demand based model that takes, among others, the aggregated wind

power as an input. Second, a stochastic dependence model that links the single turbine wind power

to the aggregated wind power. These two parts of the model can be summarized by the following

two equations:

St = ht (Dt −Wt) + Zt (5)

Xt = F−1
Xt

(
C−1
FXt (Xt),FWt (Wt)

(Ut|FWt (Wt))
)

(6)

where St is the hourly stochastic spot price and Xt the hourly single turbine wind power. The

spot price St is determined by two components: First, the function ht describes the dependence

of the spot price on the residual demand that is determined by the difference of the electricity

demand level Dt and the stochastic aggregated wind power Wt. Second, a short term stochastic

component adds to the spot price that is denoted by Zt. As operators of wind power plants are

able to curtail their power output in case of negative spot prices, their price is non-negative, i.e.,

SWt = max {0, St}.
The second part of the model links the hourly single turbine wind power Xt to the aggregated

wind power Wt at time t ∈ N. FXt and FWt denote the corresponding marginal distribution

functions. The joint distribution function of these two random variables is determined by the

corresponding copula, i.e., FXt,Wt (xt, wt) = C (FXt (xt) , FWt (wt)). Due to the copula’s ability

to separate marginal distribution functions and the dependence structure, the joint distribution

function can be modeled in a two-step process: First, the marginal distribution functions FX,t and

FW,t are determined. Second, the appropriate copula CFXt (Xt),FWt (Wt) is selected and estimated.

We deploy the conditional copula in order to keep the time series properties of the stochastic

process (Wt)t∈N. For the simulation procedure, independent [0, 1]-uniformly random variables Ut

are needed.6 Note that the marginal distribution functions are the same within a month m, i.e.,

FXi = FXj if i, j ∈ m. The same holds for FWt , ht and CFXt (Xt),FWt (Wt).

Based on Equations (5) and (6), the hourly single turbine wind power and the spot prices can

be simulated from stochastic processes. These cover the stochastic nature incorporated in the price

6For a more detailed theoretical description of the simulation procedure see section 2.2.
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determinants as well as in the dependence structure between the single turbine’s wind power and

the aggregated wind power.

3.1. The data

Different data sets are deployed in order to calibrate and estimate the different parts of the

model. In the following, we explain the content and origin of these sets, as well as the way in which

the data are preprocessed.

Prognosis of the German aggregated wind power: For the estimation of the appropriate

copula (C) as well as for the structural supply and demand model (represented by ht in Equation

(5)), data is needed on the effectively delivered day-ahead prognosis of the German aggregated wind

power in 2011. This is provided by the transmission system operators and published on the EEX

Transparency Platform (EEX Transparency Platform (2012)). Note that the day-ahead prognosis

– and not the actual aggregated wind power – is used, since this is the relevant information for the

day-ahead market (Jónsson et al. (2010)).

Wind speeds: Hourly mean wind speeds for various measurement stations in Germany are

provided via the national climate monitoring of the German Weather Service for the years 1990-

2011 (Deutscher Wetterdienst (DWD) (2012)). The measurement data for 19 locations are used in

this project to determine the corresponding power output series of wind turbines.7 Wind speeds

are scaled to the hub height of currently installed wind turbines (100 meters).8

Wind power capacities: The development of currently installed wind power capacities per

federal state between 1995 and 2011 is available from the German Wind Energy Association (Ger-

man Wind Energy Association (BWE) (2012)). In 2011, installed wind power capacities in Ger-

many amounted to 27.1 GW.

Electricity demand levels: Hourly electricity demand levels for the German market in 2011

— used as one of the explaining variables for spot prices and denoted by Dt in Equation (5) — are

provided by ENTSO-E (2012).

Spot prices: EPEX day-ahead prices from 2011 are deployed for the calibration of the spot

price model (Equation (5)). The EPEX day-ahead market is organized by an auctioning process

that matches supply and demand curves once a day, thus determining prices at which electricity

is exchanged in each respective hour.

3.2. Derivation of synthetic aggregated wind power

As an important input for the model, curves are needed that describe the wind power infeed

that the currently installed wind power capacities would have produced during the last decades

7Missing data are interpolated based on the previous and next available value if the missing gap is not exceeding
12 hours. If the gap is longer, the values are replaced by data of the same station and same hours of the previous
year.

8As wind speeds are measured only a few meters above the ground, they are scaled to the hub height of modern
wind turbines (100 meters) assuming a power law: vh1 = vh0(h1/h0)α, where h0 is the measurement height, h1 the
height of interest and α the shear exponent. According to Firtin et al. (2011), α is assumed to be 0.14.
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(i.e., the long-term stochastic behavior of aggregated wind power in the power system). In the

model, the curve is needed for the estimation of the marginal distribution FW,t of the aggregated

wind power Wt. It is important to notice that this curve has to be derived synthetically, as wind

power capacities changed significantly during the last years.

Based on wind speeds and wind power capacities, the synthetic German aggregated wind power

is generated as follows: By applying a power curve capturing the characteristics of the transfor-

mation process from wind energy to electrical power, wind turbine power generation profiles can

be derived. In this study, the power curve is assumed to be one of a GE 2.5 MW turbine (Gen-

eral Electric (2010)). Alternatively, one could use an average taken from multiple turbines. The

transformation is based on a look-up table derived from the power curve and linear interpolation.

Furthermore, electrical output is determined as a ratio of installed wind power capacity (i.e., scaled

to [0, 1]). Multiplying this ratio with the wind power capacity installed in the corresponding federal

state yields the wind power infeed. The above steps are repeated for 16 locations (one for each

federal state) and all available years (1990–2011), resulting in a time series for what would have

been produced during the last 22 years with current wind power capacities. In order to check the

plausibility of this approach, historical wind energy time series and volumes can be compared to

the model estimates. The comparison for the 2011 time series yields high conformity with an R2 of

0.84. Another check of consistency is done by calculating the accumulated aggregated wind power

production volumes for the past 10 years from the synthetically generated curves, and comparing

them to the overall wind power production as reported in Eurostat Database (2012). We find the

deviations to be less than 12%.

3.3. Structural supply and demand based model for the electricity spot price

We develop a structural supply and demand based model to derive electricity spot prices de-

pendent on the level of wind power infeed. In electricity markets, the supply curve representing

all available sources of electrical generation ranked in ascending order of their short-run marginal

costs of production is often referred to as the merit order. In our model, we implicitly approximate

the merit oder of all technologies except for wind energy by estimating an empirical function from

hourly spot prices and residual demand.9 Since in electricity markets demand is very inelastic in

the short term, the merit order determines the prices to a large extent.10 We then introduce wind

power as a generation technology that has marginal costs of production close to zero. Hence - if

available - it will always cover some part of the demand as long as prices are non-negative.

We describe the non-linear relation between residual demand and spot prices (i.e., ht in Equa-

tion (5)) by an empirical function estimated from historical hourly spot prices, demand and wind

infeed data. To derive a functional form for ht we use spline fits which are suitable to capture the

9A similar approach has been applied in Burger et al. (2006)
10For an empirical investigation of the short-term elasticity of electricity demand, e.g., refer to Liejsen (2007)
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non-linearities in the demand-price dependence. The parameters of ht are estimated from historical

data for the reference year 2011 on a monthly basis in order to capture seasonal differences and

variations on the supply side that occur, e.g., because of planned outages, variations in fuel costs,

etc.

The data and the corresponding spline fit are shown in Figure 1 for the month of February

2011. All other months of 2011 are presented in Figure B.10 in the Appendix. As can be observed,

the dependence between residual demand levels and prices is characterized by steep ends and a

comparatively flat part in between (i.e., for the residual demand ranging between 40 and 70 GW).

The steeper part in the lower tail is generally more pronounced than the price increase for higher

residual demand levels. Rather moderate price increases in the upper tail may be interpreted by

prevailing excess capacity in the German power market, leading to very few instances at which

scarcity prices occur.
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Figure 1: Demand-price dependence in February 2011 and spline fit

Besides the functional dependence on (residual) demand, additional stochastic factors influence

spot market prices such as speculation, unplanned power plant outages, scarcity prices or demand

side management.11 These effects are lumped together and captured by the short-term stochastic

process Zt in Equation (5). In the following, we aim at finding a model for Zt that is capable of

capturing the characteristics observed in the data. After having determined ht, we can derive the

observed residual short-term stochastic component based on the observations of residual demand

and spot prices from zt = st − ht(dt − wt), and use the result for the calibration of the stochastic

process (Zt)t∈N. The time series zt is visually observed to be stationary within the considered

time frame, which is confirmed by an augmented Dickey-Fuller test that indicates that the null

11All forms of demand response and load reduction are often referred to as demand side management (DSM). As
such, the dependence of demand on prices is one of the factors captured by Zt. Note that we hereby assume that
DSM is independent of the wind power infeed that we use as an exogenous simulation input.
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hypothesis of a unit root can be rejected at the 95% level.

The empirical auto-correlation function of zt decays slowly, however, with an apparent depen-

dence at a lag of 24 hours. We therefore choose to model Zt as a seasonal ARIMA (SARIMA)

model with a 24 hour seasonality. In order to do so, the ARIMA model needs to be extended to

include non-zero coefficients at lag s, where s is the identified seasonality period. SARIMA models

can be specified in a multiplicative form, resulting in a more parsimonious model than simply

extending ARIMA to s lags.12

As the Engle’s ARCH test indicates that there is conditional heteroscedasticity in the data,

we extend the SARIMA by a GARCH component. GARCH-type models are able to capture

conditional heteroscedasticity by splitting the error term εt into a stochastic component ηt and

a time-dependent standard deviation σt. The latter can then be expressed dependent on lagged

elements of ε and σt (Engle (1982), Bollerslev (1986)).

Various specifications of SARIMA-GARCH models are estimated and evaluated. Based on the

AIC, a GARCH(1,1)-SARIMA(2,0,2)×(1,0,1)24 model is found to perform best. The inclusion of

additional parameters hardly improves the fit. Note that no constant needs to be added to the

model of Zt due to the fact that the process has been already centered by applying a spline fit.

Comparing the residual’s distribution to the normal distribution yields unsatisfactory results

(Figure 2, left hand side). Thus, alternatively, the error term can be specified as a t-distribution

which leads to an improved match of the distributional shapes (Figure 2, right hand side). Instead

of ηt ∼ N (µ, σ2) we therefore use ηt ∼ t(ν), with ν being the t-distribution’s degrees of freedom

that are estimated from the data.
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Figure 2: QQ-plots of the 2011 residuals compared against a normal distribution and a Student-t distribution

12For more details about SARIMA models, the reader is referred to, e.g., Box et al. (2008).
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Written explicitly, the model for Zt now takes the following form:

Zt =φ1Zt−1 + φ2Zt−2 + Φ1Zt−24 + Φ1(φ1Zt−25 − φ2Zt−26) (7)

+ εt + θ1εt−1 + θ2εt−2 + Θ1εt−24 + Θ1(θ1εt−25 − θ2εt−26)

εt =σtηt (8)

σ2
t =α+ β1ε

2
t−1 + γ1σ

2
t−1 (9)

ηt ∼t(ν) (10)

The parameters for the above model are estimated from the short-term stochastic process zt

by optimizing the log-likelihood function. The estimates are presented in Table 2.

Table 2: Parameter estimates for the short-term stochastic process model
Parameter φ1 φ2 Φ1 θ1 θ2 Θ1 α β1 γ1 ν

Estimate 0.366 0.359 0.965 0.566 0.074 -0.845 2.955 0.295 0.466 3.610
Std. Error (0.146) (0.120) (0.002) (0.146) (0.019) (0.005) (0.032) (0.027) (0.272) (0.156)

3.4. Estimation and selection of copula models

The aggregated wind power exhibits a strong impact on spot market prices. In contrast, as long

as the single turbine’s capacity is sufficiently small, it impacts prices only marginally. However, we

find a distinctive stochastic dependence between the single turbine wind power and the aggregated

wind power that establishes a relationship between the single wind turbine and spot prices. This

dependence is found to be of particular importance for the market value, as will be shown in Section

4.

In this section, we select and estimate models for the joint distribution of a single turbine wind

power and the German aggregated wind power for 19 wind power stations in Germany13. We apply

the two-stage process introduced in Section 2: First, the marginal distributions are determined,

followed by the selection and estimation of the copula model that best describes the dependence

structure.

In order to determine the marginal distributions, we consider the hourly synthetic wind power

data for the years 1990–2011 for the different stations as well as for the German aggregated wind

power. The yearly data is split into monthly intervals in order to capture seasonal differences. We

thus obtain 22x12 subsamples from which we get 22x12 empirical distribution functions. With 22

years, the data covers a wide range of weather uncertainties that largely determine the quantity

risk of wind power. Furthermore, the extensive database allows us to use the empirical distribution

13We determine the models for the joint distribution functions between the German aggregated wind power and
the following stations: Aachen, Angermünde, Augsburg, Bremen, Dresden, Emden, Erfurt-Weimar, Idar-Oberstein,
Kahler Asten, Kleiner Feldberg, Konstanz, Leipzig-Halle, Magdeburg, Münster-Osnabrück, Oldenburg, Potsdam,
Rostock, Saarbrücken and Schleswig.
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functions as marginal distribution functions (FWt , FXt) of the two variables of interest, namely the

single turbine wind power and the aggregated wind power.14

In contrast to the marginal distribution functions, the copula model CFXt (Xt),FWt (Wt) is esti-

mated from the data of the effectively delivered day-ahead prognosis of the German aggregated

wind power in 2011 and the corresponding hourly single turbine wind power. Even though 22 years

would be available when using the synthetic aggregated wind power, we argue that for estimating,

the copula model it is important to rely on observed rather than synthetically generated data. This

is motivated as follows: First, a source of imprecision would be incorporated due to the fact that

the synthetic aggregated wind power represents the actual power delivery, whereas the day-ahead

prognosis is the relevant quantity for the spot market activities. Even though wind power forecasts

have become more reliable over the last years (Foley et al. (2012)), we want to avoid this impreci-

sion in the estimation of the copula models. Second, subsamples consisting of approximately 700

observations are sufficiently large for a reliable estimation of the copula parameters. Just as the

empirical distribution functions, the copula models are selected and estimated on a monthly basis.

To find the most appropriate copula model, various types are fitted to the data based on the

procedure introduced in Section 2.1.15 Table A.6 in Appendix Appendix A report the copulas that

provide the best fit to the data in terms of AIC for all stations that are considered in this paper.

In the following, we will first concentrate on particular stations (namely Bremen, Kleiner Feldberg

and Augsburg) in order to point out the most important aspects with respect to the dependence

structure and the effect on the results. Bremen is located in northern Germany where most of the

current wind capacity is installed due to generally high average wind speeds. Kleiner Feldberg is a

mountain in central Germany, also characterized by comparatively favorable wind speeds but less

surrounded by other wind turbines. Finally, we analyze Augsburg, which is located in southern

Germany and far away from most wind power capacities. Augsburg has the fewest full load hours

among the three stations considered. Table 3 lists the copulas providing the best fit to the data (in

terms of AIC) for these three locations in every month. 16 For Bremen and Augsburg, the copula

that provides the best fit in almost every month is the Gumbel copula. For these locations, there

is a distinctive asymmetric upper tail dependence in the dependence structure of the single turbine

wind power and the aggregated wind power. In contrast, there is hardly any tail dependence for the

turbine located at Kleiner Feldberg. Here, most of the copulas that best fit the data are symmetric

(Gaussian, Student-t and Frank copula).

Once the marginal distributions and copulas are estimated, the conditional copula model can

be used to simulate the single turbine wind power conditional on the German aggregated wind

14Instead, a parametric distribution, e.g., a beta distribution, could be assumed or estimated. This becomes
particularly attractive when there is a lack of data.

15The following copula models are tested: Gaussian copulas, Frank copulas, Clayton copulas, Gumbel copulas and
Student-t copulas for ν=1,2,3,4,5,10,20,30,40,50.

16The table reporting the AIC values for all months and all copulas fitted to the data of the three stations considered
is provided in Appendix A.
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Table 3: Copula selection for the three stations of interest

Month Augsburg Bremen Kleiner Feldberg

January Normal T40 Normal
February Gumbel Gumbel Normal

March Gumbel Gumbel Frank
April Gumbel Gumbel Frank
May Gumbel Gumbel Frank
June Gumbel Gumbel Clayton
July Frank Gumbel Frank

August Gumbel Gumbel Frank
September Gumbel Gumbel T10

October Gumbel Gumbel Normal
November Gumbel Gumbel Frank
December Frank T10 Normal

power, based on the the sampling procedure that was introduced in Section 2.2. We loop through

the 22 years and the 12 months of data and draw n = 10000 samples of the single turbine wind

power for each point of the aggregated wind power curve, while applying the corresponding single

turbine marginal distribution out of the 22x12 available.

Example: Figure 3 shows the dependence structure of the original data as well as simulations

from three different types of copula models for a wind turbine in Bremen. Visually, the Gumbel

copula provides the best fit to the data, which is confirmed by the comparison of the AIC. It

can be observed that there is a distinctive upper tail dependence between the single turbine wind

power and the German aggregated wind power. It should be noted that this type of dependence is

generally undesirable for wind turbines selling their power on the spot market, as there is a high

probability that spot prices are low in case of high power generation.

Figure 4 shows the original data together with simulations from the Gumbel copula for the

single turbine wind power located in Bremen and the aggregated wind power, transformed back

to their marginal distributions.17 As can be seen, simulations match the original data very well.

17The station is assumed to consist of 4 turbines with 2.5 MW each, thus having a rated power of 10 MW
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Figure 3: Dependence structure of the original data and simulations from three copula models
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Figure 4: Observations and sample of the single turbine wind power and the aggregated wind power
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4. Results

After having specified the entire model and estimated the necessary model parameters, samples

of the electricity spot price St and single turbine wind power Xt can be obtained. We sample from

the model Equations (5) and (6) in a Monte Carlo simulation (n = 10000) in order to investigate

revenue and market value distributions as well as the relevance of the dependence structure with

the German aggregated wind power. All stations are assumed to have a rated power of 10 MW.

While the revenue is simply the sum of the products of power production and prices, the

market value of a wind turbine is the average spot price weighted with the power production of

the respective wind turbine:

MV =

∑
tXtSt∑
tXt

. (11)

Figure 5 presents the yearly revenue distribution for a wind turbine located in Bremen together

with the 5% value at risk. The expected revenue amounts to 0.82 Mio. Euro, with a standard

deviation of 0.038 Mio. Euro and a slightly negative skew. The 5% value at risk is found to

be 0.75 Mio. Euro. Note that the distribution of absolute revenue is determined by both the

number of full load hours that can be achieved at the specific site of interest and the corresponding

market value. However, the scope of this paper lies on the dependence structures of different sites

and their impact on the market value, which is thus the main focus in the following analysis. In

particular, we demonstrate the relevance of the market value for the revenues of wind power in

today’s context, as well as for higher wind power penetration levels for which the effect becomes

increasingly important.
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Figure 5: Yearly revenue distribution of the Bremen station and the 5% value-at-risk

4.1. Revenues and market value of different wind turbines

To quantify the effect arising from the dependence structures, distribution functions of the

market value are determined and compared for the three stations Augsburg, Bremen and Kleiner
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Feldberg. Table 4 lists the main results for these three stations for the month of February. The

expected average spot price of the simulations is 48.52 Euro/MWh. In contrast, the expected

market value of the wind turbines is much lower for all turbines due to the dependence between

the single turbine wind power and the aggregated wind power, which in turn has a price damping

effect. From only the correlation coefficient ρ, one would have anticipated the expected market value

of a turbine in Augsburg (ρ = 0.37) to be much higher than the expected market value of a turbine

in Kleiner Feldberg (ρ = 0.51) which in turn should have a higher market value than a turbine in

Bremen (ρ = 0.75). However, this is not the case: Although the correlation coefficient for a turbine

in Kleiner Feldberg is much higher than that of a turbine in Augsburg, the expected market value is

also higher. The reason lies in the dependence structure. As shown in Section 3.4, the dependence

structure for Augsburg in February is best described by a Gumbel copula, thus incorporating an

upper tail dependence between the single turbine wind power and the aggregated wind power. In

contrast, the dependence structure between the single turbine wind power in Kleiner Feldberg and

the aggregated wind power is modeled most accurately by a symmetric Gaussian copula. Therefore,

Kleiner Feldberg benefits from an advantageous dependence structure when selling its wind power

at the spot market.

Table 4: Main results for the month of February

Augsburg Bremen Kleiner Feldberg

Expected average spot price [Euro/MWh] 48.52 48.52 48.52
Correlation coefficient 0.37 0.75 0.51
Selected copula model Gumbel Gumbel Gaussian

Expected market value [Euro/MWh] 43.10 41.31 44.33
Standard deviation [Euro/MWh] 5.98 6.63 5.63

The distributions of the yearly market value for the three stations considered are shown in Figure

6. Following the same logic as discussed for the specific month of February, the yearly market value

of a turbine in Kleiner Feldberg is higher than the market value for Augsburg. As can be seen in

Table 3, the dependence structure for Augsburg is modeled with a copula incorporating an upper

tail dependence in almost every month, whereas the one for Kleiner Feldberg is mostly symmetric.

Consequently, for the three distributions that are shown in Figure 6, the dependence structure

reduces the expected yearly market value of the turbines by 3.54, 4.97 and 2.63 Euro/MWh,

respectively, compared to the expected average spot price level (49.80 Euro/MWh).

4.2. Market value variations in Germany

Germany is characterized by a surface area of 357,021 km2 and a maximum horizontal width

and vertical length of 642 km and 833 km, respectively. Furthermore, there are several diverse geo-

graphical regions, suggesting that meteorological conditions may vary substantially when analyzing

different locations throughout the country.
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Figure 6: Yearly market value of the three turbines

With the model developed, we analyze the market value for 19 different stations in Germany,

as depicted in Figure 7. As the analyzed stations differ with respect to their exact location (and

thus with respect to their dependence structure related to the aggregated German wind power),

we expect market values to differ as well. Specifically, we expect the market value to be lowest for

the stations that are closest to the majority of installed wind power. Indicated by different colors,

Figure 7 shows the expected market value of the stations that were considered.

Results indicate that the expected market value ranges from 42 to 48 Euro/MWh for the an-

alyzed stations, compared to an expected average spot price level of 49.80 Euro/MWh. Hence,

the market value lies between 6 and 15% lower than the average spot price. As expected, low-

est values are found for the stations that are closest to the majority of currently installed wind

power, i.e., mainly in the area of Magdeburg and Münster-Osnabrück. For stations in this area,

the dependence structure shows a pronounced asymmetric upper tail dependence. It is observed

that expected market values are similar for all stations located in the so called ’North German

Plain’, which is a geographical region in Northern Germany characterized by constant lowlands

and hardly any hills. Note that Aachen is at the far end of the North German Plain and, as such,

equally characterized by comparatively low expected market values of 43.47 Euro/MWh. In con-

trast, Kahler Asten is located in Germany’s Central Uplands, where meteorological conditions are

different (e.g., due to pronounced thermals), which is reflected by higher values. Other stations in

or south of the Central Uplands show higher expected market values as there are very few installed

wind power capacities.

Kahler Asten and Kleiner Feldberg are special cases, as they are characterized by advanta-

geous, symmetric dependence structures, resulting in expected market values that are the highest

compared to the other stations considered. Similarly, Emden and Rostock – both located at the

seashore – show higher values, compared to other stations in the North German Plain, due to

comparatively advantageous dependence structures.
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Figure 7: Expected market value for 19 stations in Germany

4.3. The impact of changing wind power penetration levels

In the previous section, model parameters were set and estimated to reflect the current envi-

ronment with respect to the physical generation mix and the market conditions. In this section,

some of the model parameters are modified to analyze their impact on the outcome. As has been

clarified, the effect of wind power on spot market prices largely depends on the quantities of wind

power being integrated in the market. With the help of the model presented in this paper, the

aforementioned effect is quantified for the case of changing wind power penetration levels in Ger-

many. First, we scale up the wind power penetration up to two times the capacity that is currently

installed. Note that this is roughly in line with targets envisaged by the German government,

which wants to further extend wind power to 45.8 GW in 2020 (installed capacity was 27.1 GW in

2011). Second, we compare the impact of today’s wind power penetration to a situation with no

wind power installed. For the analysis, installed wind power capacities are scaled-up stepwise and

simulation runs are repeated for each of these steps. The underlying assumptions of this approach
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are as follows:

• The proportionate geographic distribution of wind power capacities within Germany remains

the same. Note that due to the linear up-scaling, the dependence structure is preserved.

Alternatively, region-specific changes in installed capacities could be implemented, e.g., for

testing the effect of an increased wind power extension in some specific area.

• The functional dependence between residual demand levels and spot prices is again estimated

from 2011 data, as explained in Section 3.3. This is certainly a strong assumption, as the

conventional power sector will dynamically develop with increasing wind power penetration.

However, it should be kept in mind that current wind power capacities are being rapidly

expanded, whereas the conventional power sector seems to be behind in terms of capacity

adjustments. Also note that the functional dependence could also be altered (e.g., by shifting

or assuming a different shape). However, this was not implemented in order to focus on the

specific impact of the wind power penetration levels.

• The parameter estimates for the short-term stochastic spot price process remain the same.

Here again, the model could be adjusted in order to represent expectations regarding future

short-term stochastic price movements.

The resulting distributions of the yearly market value of the Bremen station under increasing

wind power penetration ranging from 100-200% are shown in Figure 8. As can be observed,

the market value distribution is highly affected both in average level and variance. While the

expected market value is at 44.83 Euro/MWh at 100% scaling, it decreases to 30.13 Euro/MWh at

a scaling of 200%. At the same time, its standard deviation increases from 1.94 to 3.40 Euro/MWh,

respectively.
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Figure 8: Yearly market value of the Bremen station under increasing wind power penetration

To achieve further insights regarding the effect of the wind power penetration level, we repeat

the simulation for all three stations considered in Section 4.1 and a wind penetration level ranging

from 0-200%. The relative change in expected values of the resulting market value distributions
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are presented in Figure 9. For completeness, the expected average spot price level is also included.

Compared to an expected average spot price of 56.70 Euro/MWh at 0% scaling, the level is reduced

by 12% to 49.80 Euro/MWh for today’s penetration level. Hence, provided that the rest of the

system remains the same, the spot price level would be 7 Euro/MWh higher with no wind power

penetration. In this case, resulting market values are above average spot price levels (due to higher

wind power infeeds during wintertime when overall demand as well as prices tend to be also higher)

and almost equal for any single wind turbine as spot prices are only marginally affected by wind

power. Just as average spot price levels, expected market values decrease as the penetration level

increases, however, at very different slopes. Whereas the average spot price itself is affected the

least, the expected market value decreases corresponding to their dependence structure. They drop

below average spot price levels at penetration levels as low as around 30% of today’s capacities.

A scaling of 100% corresponds to the current situation described in detail in Section 4.1. As can

be observed, the difference between the average spot price and the market value further increases

as the scaling factor approaches 200%, reaching levels of 8.34, 11.63, and 6.20 Euro/MWh for

Augsburg, Bremen and Kleiner Feldberg, respectively.
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Figure 9: Relative change in expected values of the spot price and the market value under changing wind power
penetration levels

5. Conclusions

This paper presents a model for the simulation of single turbine wind power and electricity spot

prices, including a precise representation of their interrelations. Copula theory is applied to model

single turbine wind power and aggregated wind power, thus allowing to decouple their dependence

structure from their marginal distributions. The formation of prices is formulated as a function of

the aggregated wind power in a structural supply and demand based model. As such, the model

extends formerly known modeling approaches through the ability to simulate and quantify the

price effect of wind power, and hence to determine their market value.
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The model is calibrated for the case of Germany, where wind power today already makes up

a significant share of the power mix. Nineteen locations are analyzed in detail, for which it is

shown that the expected market value is reduced by up to 8 Euro/MWh compared to average

spot price levels. However, the market value highly depends on the specific location and the

corresponding dependence structure between the single turbine wind power at this location and

the aggregated wind power. Whereas most locations are found to be characterized by rather adverse

asymmetric dependence structures, some of the analyzed locations are identified as being related

to the aggregated wind power such that their realizable selling prices are comparatively high.

Moreover, our results indicate that, in case of increasing wind power capacities, the adverse

upper tail dependence structure of many locations has a negative impact on the market value,

which makes market integration of wind power even more difficult. Nevertheless, integrating wind

power into the market would allow market prices to reveal their key function by indicating the

actual value of electricity and thus triggering investments in wind power projects characterized

by high realizable spot prices. These projects would deploy balancing potentials much better and

reduce the volatility in the electricity spot market as well as in the physical system.

Although a powerful tool to analyze the market value of wind power in a predefined setting,

the model reveals its limitations in not being able to determine the dynamic reaction of the power

system development in response to changing levels of wind power penetration. Further research

could be done by extending the model in order to use it as a forecasting and derivative pricing

tool, or by applying the modeling approach developed in this paper to other forms of renewable

energy, e.g., solar power.
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Appendix A. Copula models and model selection

Table A.5: Copula model selection based on AIC for the Stations Augsburg, Bremen and Kleiner Feldberg.
Copula Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

A
u
g
sb

u
r
g

Clayton -13.7 -49.4 -15.9 -20.5 -55.5 -103.7 -36.0 -10.8 -6.2 -73.0 -20.9 -112.0
Frank -34.7 -99.9 -54.8 -107.4 -103.4 -168.5 -67.1 -80.8 -55.8 -145.9 -46.3 -198.2

Gumbel -19.4 -145.4 -65.1 -172.3 -135.9 -194.0 -43.4 -133.4 -111.4 -163.3 -83.5 -146.6
Normal -36.6 -109.1 -64.2 -117.5 -120.0 -182.5 -59.2 -95.0 -66.7 -156.5 -55.0 -174.0

T1 482.0 48.2 432.2 154.4 191.2 101.1 402.3 245.2 221.6 197.6 167.4 306.7
T2 158.2 -102.8 109.4 -54.8 -40.9 -112.3 92.9 1.9 3.2 -43.8 -26.2 -13.7
T3 77.8 -124.9 32.9 -95.2 -87.3 -155.7 21.0 -49.1 -39.2 -98.4 -58.0 -89.9
T4 43.5 -129.5 1.6 -108.7 -103.6 -170.8 -7.6 -67.8 -53.6 -119.9 -66.4 -120.5
T5 24.8 -129.9 -14.8 -114.5 -111.0 -177.6 -22.2 -76.8 -59.9 -130.9 -68.8 -136.2

T10 -8.4 -124.8 -42.7 -120.4 -120.0 -185.2 -45.3 -89.5 -67.2 -147.8 -67.2 -160.7
T20 -23.1 -118.5 -54.3 -120.3 -121.4 -185.4 -53.5 -93.2 -68.1 -153.5 -62.8 -169.0
T30 -27.7 -115.8 -57.8 -119.7 -121.3 -184.8 -55.7 -94.0 -67.9 -154.8 -60.6 -171.1
T40 -30.0 -114.3 -59.4 -119.3 -121.1 -184.4 -56.7 -94.3 -67.7 -155.4 -59.4 -172.0
T50 -31.3 -113.3 -60.4 -119.0 -120.9 -184.1 -57.3 -94.5 -67.5 -155.7 -58.6 -172.5

B
r
e
m

e
n

Clayton -370.7 -309.2 -263.6 -273.2 -309.4 -193.8 -292.3 -247.0 -224.9 -357.1 -390.3 -652.9
Frank -511.6 -538.0 -502.5 -641.1 -530.0 -329.1 -685.1 -498.5 -596.2 -664.1 -640.0 -787.9

Gumbel -539.1 -700.2 -610.7 -746.7 -604.6 -420.5 -692.0 -667.4 -702.0 -727.5 -788.9 -826.3
Normal -554.9 -594.2 -533.6 -614.4 -560.9 -377.4 -637.5 -547.3 -571.0 -668.8 -698.1 -867.0

T1 -333.6 -480.8 -322.3 -402.2 -305.6 -143.3 -283.6 -368.5 -303.5 -435.9 -563.0 -708.9
T2 -477.1 -576.0 -469.5 -565.0 -480.3 -303.6 -500.5 -497.6 -488.1 -591.4 -666.7 -815.8
T3 -514.1 -594.2 -505.8 -602.7 -521.8 -339.2 -559.5 -526.3 -532.2 -631.2 -689.8 -846.6
T4 -530.1 -600.0 -520.4 -616.6 -538.3 -353.3 -585.6 -537.3 -549.6 -647.8 -698.2 -860.1
T5 -538.6 -602.2 -527.6 -622.7 -546.6 -360.5 -599.8 -542.5 -558.2 -656.3 -701.9 -867.1

T10 -551.9 -602.4 -536.8 -627.7 -558.8 -371.7 -623.6 -549.3 -570.0 -668.5 -705.1 -875.8
T20 -555.4 -599.7 -537.5 -624.5 -561.6 -375.4 -632.3 -549.9 -572.3 -670.9 -703.5 -875.1
T30 -555.8 -598.2 -536.8 -622.1 -561.9 -376.3 -634.5 -549.5 -572.3 -670.8 -702.2 -873.6
T40 -555.8 -597.4 -536.2 -620.5 -561.9 -376.7 -635.4 -549.2 -572.2 -670.6 -701.4 -872.4
T50 -555.8 -596.8 -535.8 -619.5 -561.8 -376.8 -636.0 -548.9 -572.0 -670.3 -700.9 -871.6

K
le
in

e
r
F
e
ld

b
e
r
g

Clayton -76.5 -142.7 -158.9 -142.0 -252.9 -235.2 -202.5 -79.8 -94.8 -141.6 -77.6 -230.5
Frank -88.3 -189.8 -194.6 -231.9 -308.9 -187.9 -211.1 -110.1 -96.9 -166.3 -80.7 -269.4

Gumbel -58.2 -164.3 -115.3 -187.4 -197.9 -89.1 -101.3 -60.1 -114.1 -142.5 -32.4 -285.1
Normal -88.7 -199.8 -192.3 -227.0 -288.8 -188.8 -181.4 -100.4 -115.7 -192.4 -70.7 -318.5

T1 288.9 136.8 321.1 173.3 190.2 238.2 286.6 405.0 123.2 275.6 327.8 -1.8
T2 24.8 -79.2 6.0 -80.3 -106.3 -36.4 -20.4 78.8 -65.7 -15.5 56.7 -209.5
T3 -32.8 -131.8 -75.0 -143.6 -181.9 -103.6 -94.8 -0.5 -101.1 -88.0 -5.1 -257.5
T4 -54.6 -153.9 -110.2 -170.5 -214.5 -131.7 -125.2 -33.2 -112.6 -119.2 -29.4 -277.2
T5 -65.4 -165.8 -129.5 -184.9 -232.2 -146.5 -140.9 -50.5 -117.3 -136.3 -41.6 -287.6

T10 -81.2 -185.9 -163.9 -209.4 -263.5 -171.5 -166.2 -79.5 -121.2 -166.8 -60.5 -305.3
T20 -86.1 -193.8 -178.9 -219.2 -276.9 -181.3 -175.3 -91.0 -120.0 -180.2 -66.8 -312.6
T30 -87.3 -196.1 -183.6 -222.1 -281.1 -184.1 -177.7 -94.4 -118.9 -184.4 -68.4 -314.7
T40 -87.7 -197.1 -185.8 -223.4 -283.1 -185.4 -178.8 -96.0 -118.3 -186.5 -69.1 -315.7
T50 -88.0 -197.7 -187.2 -224.2 -284.3 -186.1 -179.4 -96.9 -117.8 -187.7 -69.5 -316.3
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Appendix B. Demand-price dependence

Residual demand [GW]
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Figure B.10: Demand-price dependence and spline fits for all months of 2011
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