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Abstract
The mathematical conditions for the existence of macroeconomic production func-
tions that are state functions of the economic system are pointed out. The output
elasticities and the elasticities of substitution of energy-dependent Cobb-Douglas,
CES and LinEx production functions are calculated. The output elasticities, which
measure the productive powers of production factors and whose numerical values
have been obtained for Germany, Japan, and the USA, are for energy much larger
and for labor much smaller than the cost shares of these factors. Energy and its
conversion into physical work accounts for most of the growth that mainstream eco-
nomics attributes to “technological progress” and related concepts. It decisively
determines the economic state of nations. Consequences for automation and glob-
alization and perspectives on growth are discussed.
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1 Introduction

The gross domestic product (GDP) is a nation’s output of goods and services. It
measures the value added created by economic activities within the country and
does not include imported intermediate goods and services. The GDP has been
traditionally identified with the wealth of nations, and its growth has been the aim
of economic policy everywhere. Critics object that the GDP does not say enough
about the quality of life. On the one hand, it does not include activities like unpaid
housekeeping, the upbringing of children, and honorary social services. And severe
inequalities of wealth distribution, which may cause social turmoils, are no issue
either. On the other hand, it comprises all services and goods required in order
to mitigate the effects of traffic accidents, repair damages from man-made disasters
like the explosion of maritime oil-drilling platforms, and cure diseases caused by
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pollution. But more than two decades of research into the development of a reliable,
quantitative indicator for the quality of life have not yet succeeded in producing a
generally accepted substitute for GDP. Furthermore, people like to live in countries
where a high GDP per capita indicates that the average individual commands a
rich consumer basket of material goods and services. The increasing migration from
countries of low GDP per capita to countries of high GDP per capita demonstrates
this. People agree in general that the latter are better off than the former, because
they use technology and natural resources more intensively for the production of
material wealth. Since the GDP is an important, although not sufficient quantitative
indicator of the socio-economic state of nations, this paper tries to outline the general
mathematical framework for its computation. Methods of calculating key quantities
of an economic system are presented.

The plan of the paper is the following. Section 2 discusses the physical justificati-
ton and general mathematical properties of macroeconomic production functions
that depend on capital, labor, energy, and time. The explicit time dependence
models the specific human contribution to production and growth, which we call
creativity. We indicate the fundamental flaw of standard economic theory: the
disregard of technological constraints on the combination of production factors in
the determination of macroeconomic equilibrium by the maximization of profit or
time-integrated utility. Appendix A gives more details. The system of differential
equations, from which the economic weights of the production factors, called out-
put elasticities, and the production functions themselves are to be calculated, is
presented. Appendix B relates these basic equations to the production functions’
twice differentiability. Section 3 presents three special solutions of the partial dif-
ferential equations for the output elasticities, the corresponding energy-dependent
Cobb-Douglas, CES and LinEx functions, and the elasticities of substitution of these
production functions. Findings from prior econometric analyses of economic growth
in Germany, Japan, and the USA are reported, according to which the output elas-
ticity of energy far outweighs its small share in total factor cost while for labor just
the opposite is true. Section 4 discusses the political and social consequences that
result from the fact that energy decisively determines the economic state of nations.

2 Twice differentiable production functions as

state functions of economic systems

Standard economics describes the GDP, or the output of subsectors of an economy,
by twice-differentiable functions of the factor inputs. These macroeconomic pro-
duction functions have the important property that they depend only on the actual
numerical values of the production factors and not on the path in factor “space”
along which the economy has arrived at the magnitudes of the inputs. Macroeco-
nomic production functions are state functions of the economic system in the same
sense as entropy, internal energy, enthalpy, and (Helmholtz and Gibbs) free energy
are state functions of thermodynamic systems.
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2.1 Why macroeconomic production function do make

sense

The concept of the twice-differentitiable macroeconomic production function is
widely accepted. Nevertheless, it has been criticized by scholars who have been
concerned about the physical aspects of production [1]–[6]. Their criticism centers
on three principal objections. The first is the problem of aggregating the heteroge-
neous goods and services of output into one monetary quantity, represented in the
national accounts by the deflated GDP, or parts thereof. The second is the related
problem of aggregating the heterogeneous components of the capital stock (ma-
chines, structures, etc.) into one monetary quantity “capital”, measured by deflated
currency in the national accounts. The third problem is the unclear relationship
between the micro theory of production in individual firms, for which the concept
of the (micro)production function is not questioned, and the macro theory.

These concerns have led to a scheme of aggregating output and capital in the phys-
ical terms of work performance and information processing and relating the physical
aggregates to the usual inflation-corrected monetary aggregates via equivalence fac-
tors [7, 8].1 Since work performance and information processing are subject to the
causal laws of nature, their result, the economic output, should depend as uniquely
on the work-performing and information-processing production factors capital, la-
bor, and energy as any state function of physical systems depends on its physical
variables.

2.2 Flaws of standard economics

Thus, we think that the concept of the macroeconomic production function is not
the weak point of mainstream economics. But by combining this concept with the
observance of technological constraints in the derivation of economic equilibrium one
finds the true breaking point of standard economic theory: As sketched in Appendix
A, the cost-share theorem, according to which the economic weight (output elastic-
ity) of a production factor should be equal to the factor’s share in total factor cost,
is destroyed by shadow prices, which translate technological constraints into mone-
tary terms. The technological constraints are: 1. the degree of capacity utilization
cannot exceed 1, and 2. the degree of automation cannot exceed the technologically

1In brief, the relation between physical and monetary aggregates is the following. The physical

capital unit is defined as 1 ATON ≡ 1 kW×κ kB/s (kW= kilowatt, kB/s = kilobits per second).

The equivalence factor κ is given by κ = (1/N)
∑N

i=1
SiTi, where the definitions of N , Si, and Ti

imply the measurement description of the ATON: The capital stock K is partitioned in N >> 1
pieces Ki that all have the same monetary value, say ν euros. Then Si = number of kilowatts
performed and Ti = number of kilobits per second processed by the fully employed ith capital
good Ki. Consequently, the physical value of capital, which is AK , grows proportionally to the
monetary value of capital, which is MK and shown in the national accounts in constant currency,
as long as κ (and thus the ATON) does not change in time: AK = N ATON =

∑

N

i=1
SiTi

kW× kB/s; MK ≡ Nν euro; thus, AK = (MK/ν) ATON/euro. Changes of κ occur, when the
monetary valuation of the capabilities of work performance and information processing changes.
An equivalence factor ζ, similar to κ, appears in the technical definition of output in terms of the
physical work performed and the the number of information units processed in its generation.
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possible degree of automation, whose maximum value is 1 [8, 9]. The often-used du-
ality between factor-dependent production functions and the profit functions that
result from them by a Legendre transformation is not valid either as a consequence
of the technological constraints. This confers new importance to the search for
appropriate methods of computing macroeconomic production functions.

Traditionally, capital and labor have been considered as the principal factors of
production. In industrialized countries their cost shares have been in the 25–30
percent range and 65–70 percent range, respectively. After the oil price shocks of
the 1970s and 80s, energy was occasionally taken into account as a third produc-
tion factor with the small cost-share weight of roughly 5 percent. But mainstream
economics has the problem that it can explain only about half, or less, of the ob-
served economic growth of industrialized countries by the growth of the cost-share
weighted production factors. The other half, or more, is attributed to “technological
progress”. This is just a word for what is not understood. The dominating role of
technological progress “has lead to a criticism of the neoclassical model: it is a the-
ory of growth that leaves the main factor in economic growth unexplained” [10], as
the founder of neoclassical growth theory, Robert A. Solow, stated himself. On the
other hand, analyses of economic growth that forgo cost-share weighting find that
energy and its conversion into physical work accounts for most of the growth that
mainstream economics attributes to “technological progress” and related concepts
[9, 11, 12]. This is in line with the observation that “universal history can be sub-
divided in three parts. Each part is characterized by a certain energy system. This
energy system establishes the general framework, within which the structures of so-
ciety, economy and culture form. Thus, energy is not just one acting factor among
many. Rather it is possible, in principle, to determine the formal basic structures of
a society from the pertaining energetic system conditions.”[13]

2.3 Structure and factors of modern economies

We consider an industrialized economy. It consists, roughly speaking, of a physical
basis that produces goods and services, and a market superstructure, where eco-
nomic actors trade the products of the physical basis. Price signals from supply and
demand provide the feedback between the productive physical basis and the mar-
ket superstructure, see Fig. 1. Three production factors are busy in the physical
basis and produce the output Y , which is the GDP, if the system is the national
economy. 1) Energy-converting and information-processing machines together with
all buildings and installations necessary for their protection and operation represent
the production factor capital K. Any machine that is activated by energies that
do not flow out of living bodies has at least one information processor: the valve
or switch that opens up and shuts down the energy flow into the machine. (The
difference between Newcomen’s steam pump and James Watt’s first pumping steam
engine was the separate condensing chamber, which increased the number of valves
from three to four.) 2) The capital stock K is manipulated and supervised by peo-
ple, who constitute the production factor labor L. 3) The machines of the capital
stock are activated by energy (more precisely exergy [14]), which is the production
factor E. (As a rule, the professional qualification of labor has to increase with
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Figure 1: The productive physical basis of an industrialized economy consists of
the sectors agriculture, industry, and services. Their energy intensities differ, but
none of them could do without energy conversion. Entropy production is coupled to
energy conversion, with repercussions on growth discussed in Section 4. The wealth
produced in the basis is allocated on the market, whose legal framework determines
the outcome. [8]

the energy flows through the capital stock it controls.) The measuring units are:
deflated monetary units for output Y and instrumental capital K as listed by the
national accounts, manhours worked per year for routine labor L as shown by the
labor statistics, and energy quantities like petajoules “consumed” per year for the
factor E.2 The working of human creativity via ideas, inventions and value decisions
is modeled by an explicit time dependence of the production function, which man-
ifests itself, e.g., in a time change of the energy-demand parameter of the capital
stock when capital’s energy efficiency increases.

It is convenient to introduce new, dimensionless variables, for which we use lower
case letters, by writing inputs and output as multiples of their quantities K0, L0, E0,
and Y0 in a base year t0. The transformation to the dimensionless time series of
capital, k(t), labor, l(t), and energy, e(t), is given by

k(t) ≡
K(t)

K0

, l(t) ≡
L(t)

L0

, e(t) ≡
E(t)

E0

, (1)

and the dimensionless production function at time t is

y[k, l, e; t] ≡
Y (kK0, lL0, eE0; t)

Y0

. (2)

2Fossil and nuclear fuels, kinetic and potential energy, and solar radiation as well, are practically
100 percent exergy. Therefore, it is appropriate to work with the primary energy data of the
national energy balances that include these energy forms properly.
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2.4 Growth equation and output elasticities

The production function y[k, l, e; t] is supposed to be twice differentiable. Therefore
its infinitesimal change is the total differential dy. Dividing dy by y one obtains the
growth equation

dy

y
= α

dk

k
+ β

dl

l
+ γ

de

e
+ δ

dt

t − t0
, (3)

where the output elasticities

α ≡
k

y

∂y

∂k
, β ≡

l

y

∂y

∂l
, γ ≡

e

y

∂y

∂e
, (4)

represent the weights with which the growth rates of capital, labor and energy
contribute to the growth of output. The output elasticities indicate the productive
powers of the production factors. Creativity, in the above-mentioned sense, gives
rise to

δ ≡
t − t0

y

∂y

∂t
. (5)

We emphasize that the infinitesimal change of a production function that were
not twice differentiable would not be a total differential. Its integral would depend
on the path of integration in (k, l, e) space and contain not more information on
the state of an economic system than the integral of a non-conservative frictional
force along a line in position space contains information on the state of a dissipative
physical system. (A motor car that slows down because it dissipates its kinetic
energy by friction with air and road is such a system.) On the other hand, the
total differential in the growth equation (3) can be integrated along any convenient
path in (k, l, e) space. The calculation of the LinEx function in Section 3 indicates
such a path. The explicit condition for twice differentiability and path-independent
integrability is that the second-order mixed derivatives of y[k, l, e; t] are equal. As it
is shown in Appendix B, this condition results in the partial differential equations
for the output elasticities

l
∂α

∂l
= k

∂β

∂k
, e

∂β

∂e
= l

∂γ

∂l
, k

∂γ

∂k
= e

∂α

∂e
. (6)

Formally, these equations correspond to the Maxwell relations in thermodynamics.
At any fixed time t the contributions from the growth rates of all factors to the

growth of output must add up to 100 percent, so that the output elasticities must
satisfy the the so-called “constant returns to scale” relation

α + β + γ = 1 . (7)

This relation characterizes linearly homogeneous production functions, whose value
increases by a certain factor, say λ, if all inputs increase by the same factor3 λ. We

3An increase of all inputs by λ must increase output by λ, because at the fixed state of technology
that exists at the given time t a, say, doubling of the production system doubles output; in other
words: two identical factories with identical inputs of capital, labor and energy produce twice
as much output as one factory. Thus, the production function must be linearly homogeneous
in (k, l, e) so that y(λk, λl, λe) = λy(k, l, e) for all λ > 0 and all possible factor combinations.
Differentiating this equation with respect to λ according to the chain rule and then putting λ = 1
one obtains the Euler relation k(∂y/∂k) + l(∂y/∂l) + e(∂y/∂e) = y. Dividing this by y yields
(k/y)(∂y/∂k) + (l/y)(∂y/∂l) + (e/y)(∂y/∂e) = 1. With eqs. (4) this becomes eq. (7).
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assume that y[k, l, e; t] is linearly homogeneous indeed. Appendix B shows that the
combination of eqs. (6) and (7) yields the set of partial differential equations [7, 15]

l
∂α

∂l
= k

∂β

∂k
, k

∂α

∂k
+ l

∂α

∂l
+ e

∂α

∂e
= 0, k

∂β

∂k
+ l

∂β

∂l
+ e

∂β

∂e
= 0 . (8)

The most general solutions of the second and the third differential equation in (8)
are4

α = A

(

l

k
,
e

k

)

, β = B

(

l

k
,
e

k

)

, (9)

where A and B are any differentiable functions of their arguments. Because of the
first equation in (8) they are coupled together by

β =
∫ k l

k′

∂A

∂l
dk′ + J

(

l

e

)

; (10)

here J(l/e) is any differentiable function of l/e.
The output elasticities, and thus the combinations of k, l, e, must satisfy the re-

strictions
α ≥ 0, β ≥ 0, γ = 1 − α − β ≥ 0 , (11)

which result from the technical-economic requirement that all output elasticities
must be non-negative. Otherwise the increase of an input would result in a decrease
of output—a situation the economic actors will avoid.

The general form of the twice-differentiable, linearly homogeneous production
function with the output elasticities (9) is

y = eF

(

l

k
,
e

k

)

. (12)

Of course, one can write this function also as y = kG, with G = (e/k)F , or as
y = lH, with H = (e/l)F .

According to the theory of partial differential equations the output elasticities,
and thus the production function, could be uniquely determined, if β were known
on a boundary surface in k, l, e-space and if one knew α on a boundary curve in that
space [15]. However, it is practically impossible to obtain this technical-economic
information on α and β. Without that one cannot compute the output elasticities
at a given time t exactly. One must make do with approximations. We indicate
some of them in the next section, and the pertaining production functions as well.
(Factor prices do not play a role in that, because, according to eqs. (26) and (27)
of Appendix A, the cost-share theorem is not valid.)

2.5 Elasticities of substitution

Besides output elasticities, the elasticities of substitution between production factors
are of interest to economists. The (Hicks, or direct) elasticity of substitution σij

4The derivation according to the theory of partial differential equations is given in [15]. Verifi-
cation by insertion into (8) is easy.
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between two factors xi and xj is defined as

σij ≡ −
d(xi/xj)

(xi/xj)
·





d
(

∂y/∂xi

∂y/∂xj

)

(

∂y/∂xi

∂y/∂xj

)





−1

. (13)

It gives the ratio of the relative change of factor quotients to the relative change of
the quotients of the marginal productivities, if only the factors xi and xj vary and
all other factors stay constant.

In the three-factor model with (x1, x2, x3) = (k, l, e) the elasticities of substitu-
tion can be expressed by the output elasticities α, β and γ. After some algebraic
manipulations one finds [16]

σkl =
−(α + β)αβ

β2(k∂α/∂k − α) + α2(l∂β/∂l − β) − 2αβl∂α/∂l
, (14)

σke =
−(α + γ)αγ

γ2(k∂α/∂k − α) + α2(e∂γ/∂e − γ) − 2αγe∂α/∂e
, (15)

σle =
−(β + γ)βγ

γ2(l∂β/∂l − β) + β2(e∂γ/∂e − γ) − 2βγe∂β/∂e
. (16)

3 Cobb-Douglas, CES, and LinEx functions

We present three special solutions of the partial differential equations (8). The per-
taining production functions have been used for some time in production and growth
theory. Historically, the Cobb-Douglas and the CES functions were designed before
the partial differential equations (8) had been derived. Nevertheless, the output
elasticities of their energy-dependent versions do satisfy these equations. LinEx
functions, on the other hand, follow from solutions of (8) and the expected behavior
of output elasticities, if factor ratios approach certain limiting values. (Energy-
dependent translog functions and their relation to Cobb-Douglas and LinEx func-
tions are discussed in [17]).

3.1 Energy-dependent Cobb-Douglas function

The simplest approach to output elasticities and production functions is choosing
the trivial solutions of eqs. (8), which are constants: α = α0, β = β0. If one inserts
them into eq. (3) at fixed t, observes γ0 = 1 − α0 − β0, and integrates y from y0

CDE

to yCDE and the factors from (1, 1, 1) to (k, l, e), one obtains the energy-dependent
Cobb-Douglas function (CDE)

yCDE = y0

CDEkα0lβ0e1−α0−β0 . (17)

This function is often used in quantitative analyses of standard economics,5 where
α0, β0, and 1−α0 −β0 are set equal to the cost shares of capital, labor, and energy;

5Analyses of the economic impacts of climate change like the DICE model of Nordhaus assume
that “Output is produced by a Cobb-Douglas production function in capital, labor, and energy”
[18].

8



these shares have happened to be approximately constant until recently. However,
the equilibrium conditions (26) in the presence of technological constraints no longer
justify their use in yCDE.

The conceptual problem with the Cobb-Douglas function is that it is a production
function with complete substitutability of the production factors. Therefore, its use
for computing scenarios of the future, for instance in [19], is problematical. Things
are different, if Cobb-Douglas functions are employed to describe economic growth of
the past, when, of course, the empirical inputs of capital, labor and energy trivially
stayed within the range of the physically possible. Whenever this has been done
independently from any cost-share considerations, for instance by fitting yCDE to
the time series of output [17, 20] and by cointegration analysis [21], the output
elasticity of energy turns out to be much larger than 0.05. We will see below that
this finding is substantiated by production functions that are more sophisticated
than Cobb-Douglas.

3.2 Energy-dependent CES function

Constant elasticities of substitution production functions were introduced into
econometrics by Arrow et al. [22] and extended to more than two factors by Uzawa
[23]. The linearly homogeneous CES function of k, l, e has the form [16]

yCES = y0

CES[ak−ρ + bl−ρ + (1 − a − b)e−ρ]−1/ρ. (18)

The parameters a and b are usually called “distribution parameters”. They must
be non-negative. The constant ρ ≡ 1/σ − 1, which is determined by the constant
elasticity of substitution σ, must be larger than -1. The CES function can be easily
brought into the form of eq. (12). It satisfies the fundamental set of equations (3) –
(8). Its output elasticities are obtained from (4). With the definition q ≡ yCES/y0

CES,
they become [16]

αCES = a(q/k)ρ, βCES = b(q/l)ρ, γCES = 1 − αCES − βCES. (19)

In the limit σ → 1, when ρ → 0, the CES function (18) turns into the Cobb-Douglas
function (17). This is most easily seen from the CES output elasticities (19), which
become constants in this limit.

If there were no technological constraints and shadow prices, so that eq. (28) and
the cost-share theorem would hold, one could relate the CES parameters a, b and ρ
to factor prices via eq. (19) and the combination of eq. (28) in Appendix A with
the Euler relation in footnote 1. But as things are, this is no option (any more).
As in the case of yCDE, fitting to empirical time series of output would avoid the
shadow-price problem.6

6If one had somehow obtained appropriate output elasticities and would postulate that output
is the sum of factor prices times factor quantities, one could introduce factor prices into the CES
function via eq. (19).
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3.3 LinEx function

As indicated above, the exact boundary conditions on the partial differential equa-
tions (8) are unknowable. But how about asymptotic technological boundary con-
ditions on the output elasticities? Consider two examples.

1. Machines do not run without energy and (still) require people for handling
them. Therefore, the additional output due to an additional unit of capital
should decrease as the ratio of labor and energy to capital decreases. This is
the case, if the output elasticity of capital, α, vanishes, if l/k and e/k go to
zero.

2. In principle, with sufficient capital and energy, it should be possible to produce
a given quantity of output y in a state of automation such that the addition of
another unit of routine labor does not contribute to output any more. We call
this the state of maximum automation. More precisely, if km(y) is the fully
employed capital stock in the state of maximum automation, and em ≡ ckm(y)
is its energy (exergy) demand, then the output elasticity of labor, β, should
vanish if k approaches km(y) and e approaches em ≡ ckm(y). (As pointed
out in Appendix A, the achievable state of automation represents one of the
technological constraints on factor combinations.)

The simplest output elasticities that satisfy the differential equations (8), constant
returns to scale and these asymptotic boundary conditions are [7]

α = a
l + e

k
, β = a

(

cl

e
−

l

k

)

, γ = 1 − α − β = 1 − a
e

k
− ac

l

e
. (20)

The parameter a indicates the effectiveness with which energy activates and labor
handles the capital stock. The negative term in β is a direct consequence of the
choice of α, as can be seen from the integral in (10). The positive term in β is

a special choice of the function J
(

l
e

)

in (10) so that the asymptotic boundary
condition for β is fulfilled.

The restrictions (11) are important for understanding the economic meaning of
the output elasticities (20) and of the LinEx function (21), which follows from them.
They imply β ≤ 1 and thus require that l goes to zero as e does. This is consistent
with the fact that workers lose their jobs if production ceases because of the lack of
energy.

Inserting the output elasticities (20) into eq. (3) at fixed t, and integrating y
from y0

L1
to yL1 and the production factors from (1, 1, 1) to (k, l, e) 7 one obtains the

(first) LinEx production function

yL1 = y0

L1
e exp

[

a

(

2 −
l + e

k

)

+ ac

(

l

e
− 1

)]

, (21)

7A convenient path is one along whose three different segments only one factor changes at a
time while the other two stay constant.
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which depends linearly on energy and exponentially on quotients of capital, labor
and energy [7]. In contrast to the energy-dependent Cobb-Douglas function the
restrictions (11) do constrain the combinations of factors in the LinEx function.8

The LinEx function (21) contains the technology parameters a (capital effec-
tiveness), c (energy demand of the capital stock), and y0

L1
, which are determined

econometrically subject to the restrictions (11). It is a phenomenological function
that describes the output of an economy approximately. Its deviations from the
exact production function correspond to the deviations of the asymptotic boundary
conditions from the exact boundary conditions. One cannot expect that the LinEx
approximation maps all details of production. What matters is the overall picture,
while details may be blurred or distorted. This is as inevitable as the incomplete
description of the physical world by the natural sciences and their model approxi-
mations. In the end, comparison of the model results with experience will eliminate
those models whose approximations are too crude. Modified asymptotic boundary
conditions yield modified LinEx functions [16, 17].

The phenomenological LinEx parameters a, c and y0

L1
become time dependent,

separately or altogether, when creativity acts and the LinEx function acquires an
explicit time dependence: yL1 = yL1[k, l, e; t]. For instance, c(t) decreases when
investments in energy conservation improve the energy efficiency of the capital stock.
This occurred quite noticeably in response to the oil price shocks in the 1970s and
1980s and is an example for the (thermodynamically limited) substitution of capital
for energy. Structural changes by outsourcing energy-intensive industries may also
decrease c(t). The LinEx function reproduces economic growth in Germany, Japan
and the USA in good agreement with the empirical data. Recent empirical and
theoretical growth curves for Germany, Japan and the USA are shown in [26] and
[8]. Figures 2 – 4 indicate the time-averaged output elasticities of capital, labor,
energy, and creativity.

Ayres and Warr [12, 20] have replaced primary energy by “useful work” in the
LinEx function. “Useful work” is defined as exergy, multiplied by appropriate con-
version efficiencies, plus physical work by animals. The “useful work” data [14]
include most of the efficiency improvements that have occurred in energy converting
systems during the 20th century. In this case, two constant technology parameters
suffice to reproduce well the gross domestic product of the US economy between
1900 and 1998. The time averages of the corresponding k, l, e output elasticities are
similar to the ones in Fig. 4.

The statistical quality measures of the analyses that result in Figs. 2–4, and the
error bars, are shown in Appendix C. The adjusted coefficients of determination
R2 exceed 0.995, and the Durbin-Watson coefficients dW are between 1.46 and 1.9.
They are much better than in the case of fitting the energy-dependent Cobb-Douglas
function to the empirical time series of output. As in earlier studies [11, 17] the
output elasticities are much larger for energy and much smaller for labor than the

8Explictly, these restrictions limit factor substitutability by the relations k/(l + e) ≥ a (≥ 0),
e/k ≤ c (≥ 0), 0 ≤ a(e/k + cl/e) ≤ 1. Therefore, the substitutability objection raised in [24]
against the LinEx function is not valid. Furthermore, the production function proposed in [24],
see also [25], would deserve discussions with respect to twice differentiability and limitationality,
among others. But here is not the place for that.
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Figure 2: Time-averaged output elasticities (productive powers) in the total econ-
omy of the Federal Republic of Germany (top) and in Germany’s industrial sector
“Warenproduzierendes Gewerbe” (bottom). [8]

Figure 3: Time-averaged output elasticities in the Japanese sector “Industries”, which
produces about 90% of Japanese GDP. [8]

cost shares of these factors. Social consequences, such as shifting the burden of
taxes and levies from the factor labor to the factor energy, are discussed in [26] and
Section 4.

Finally, the elasticities of substitution of the LinEx function are obtained by
inserting the output elasticities of eq. (20) into eqs. (14)–(16). After some algebraic
manipulations one can express the LinEx elasticities of substitution by the LinEx
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Figure 4: Time-averaged output elasticities in the total US economy. [8]

output elasticities α = a(l + e)/k, β = a(cl/e − l/k) , and the term al/k :

σkl =
α + β

2(β + al/k)
, (22)

σke =
(1 − β)(1 − α − β)

2(1 − β)(1 − β − al/k) − α
, (23)

σle =
−(1 − α)(1 − α − β)

β(1 − 2α) + 2(1 − α)al/k
. (24)

Obviously, LinEx is a variable elasticities of substitution (VES) function. Time series
of i) the LinEx output elasticities, ii) the technology parameter a(t), and iii) the
factor quotient l/k can be computed from German, Japanese and US data contained,
e.g., in [8] and [20]. The actual computation of the elasticities of substitution (22)–
(24) with the help of these data is left to future work.

4 Summary and Outlook

An important, although not sufficient indicator of the socio-economic state of nations
is the gross domestic product. Its description by twice-differentiable macroeconomic
production functions is physically justified. These functions are integrals of the
growth equation. The output elasticities in the growth equation are solutions of a set
of partial differential equations. They measure the economic weight and productive
power of the production factors capital, labor and energy. Because of technological
constraints they are not equal to the shares of these factors in total factor cost.
Rather, they are for energy much larger and for labor much smaller than the cost
shares. Thus, energy and its conversion into physical work accounts for most of
the growth that mainstream economics attributes to “technological progress” and
related concepts. It decisively determines the economic state of nations.

This finding is fundamentally at variance with mainstream economic thinking.
The standard objection to this finding is: “If this were true, money would be lying
on the street. One only had to increase the input of cheap energy and decrease
that of expensive labor until output elasticities and cost shares are equal.” This
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reasoning of orthodox economists overlooks the insurmountable barriers that block
access to that side of the street, where the money lies. These barriers are precisely
the technological constraints, that determine the shadow prices: One can neither
increase energy input beyond design capacity of the machines, and decrease labor’s
handling of the machines correspondingly, nor substitute energy and capital for labor
beyond the limit to automation that exists at a given time.

The large discrepancies between productive powers and cost shares of energy and
labor explain the pressure to increase automation as quickly as technology permits,
substituting cheap energy/capital combinations for expensive labor. (This way one
gets bit by bit to a limited street sector where the money lies, indeed.) Increasing
automation is the main part of what is called “increasing productivity”. In the past,
when labor unions were strong, they demanded and got wage increases according to
labor’s increased productivity. This way the value added created by the exploitation
of the the energy sources was given to the general population. As a result, labor’s
share in GDP was between 70 and 60 percent in the highly industrialized countries.
By now, however, more and more formerly well-paid industrial full-time jobs are lost
to automation.

The imbalance between economic weights and costs of labor and energy also re-
inforces the trend toward globalization, because goods and services produced in
low-wage countries can be cheaply delivered to high-wage countries thanks to cheap
energy and increasingly sophisticated, highly computerized transportation systems.
Thus, if the disparities between productive powers and cost shares of labor and en-
ergy are too pronounced, there is the danger that newly emerging and expanding
business sectors cannot generate enough new jobs that can compensate for the ones
lost to progress in automation and globalization. This, then, will result in the net
loss of full-time routine jobs in high-wage countries and increasing unemployment,
or poorly paid part-time employment, in the less qualified part of the labor force. A
slow–down of economic growth, as natural constraints may cause, or economic re-
cessions for whatever reasons, will aggravate the employment problems.[9] Shifting
the burden of taxes and levies from the factor labor to the factor energy may be a
response to the problems that result from energy’s high productive power. This is
discussed more in detail in [8, 26].

The recent history of economic thought shows that energy receives attention as a
factor of production only, when restrictions on energy utilization cause recessions.
This happened during the so-called first and the second energy crisis, when oil prices
exploded between 1973 and 1975 in the wake of the Yom-Kippur War, and between
1979 and 1981 as a consequence of the Iranian revolution and the Iran-Iraq war. At
that time Jorgenson saw a relation between the oil price hikes and the recessions
[27, 28], whereas Denison [29] objected on the basis of the cost-share theorem. With
the decline of oil prices between 1981 and 1997 to nearly pre-1973 levels, interest
in energy was again not more than interest in a natural resource as one commodity
among many. By now, inflation-corrected oil prices have reached the 1981 maximum
again. But the present economic instabilities are more attributed to the financial
crisis that was triggered by the crash of the US real estate market in 2007/2008 than
to a precursor of “Peak Oil”, i.e. the decline of conventional oil production after a
peak in the near future [30].
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In any case, mainstream economic theory will realize the importance of the fac-
tor energy, when the First and the Second Law of Thermodynamics will hit our
economies with full force. These laws represent the constitution of the universe.
They say: “Nothing happens in the world without energy conversion and entropy
production.” Thus, energy conversion in the machines of the capital stock is indis-
pensible for the generation of wealth, on the one hand. And the growth of wealth
is endangered, on the other hand, because energy conversion is inevitably coupled
to entropy production. Entropy production destroys exergy and manifests itself in
emissions of heat and particles. These emissions will eventually restrict energy uti-
lization and growth in the finite system Earth, when the emission-absorbing and
life-supporting capacities of the biosphere are being exhausted. (A crude model of
the limits to growth within Earth’s finite biosphere is given by the growth equation
whose output elasticities are multiplied by pollution and recycling functions [8, 15].)
Reduction of emissions at unchanged energy services can be achieved by improving
the energy efficiency of the capital stock within the limits drawn by thermodynam-
ics [31, 32]. This changes the output elasticities in the growth equation (3); for
instance, in the LinEx approximation, where the output elasticities are given by eq.
(20), the energy-demand parameter c decreases and the parameter a, which indi-
cates capital effectiveness, increases. Furthermore, energy conservation and the use
of renewable energies require investments in the corresponding energy-converting
technologies [33, 34]. These technologies become additional components of the cap-
ital stock. This also changes the output elasticities in eq. (20). To get the full
picture one would have to combine appropriate energy-dependent production func-
tions – the simplest case would be LinEx – with models of energy, emission, and
cost optimization, such as the ones used in [33, 34].

Finally, further research should evaluate the relations between elasticities of sub-
stitution and output elasticities for CES and LinEx functions.
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Appendix A

Entrepreneurial decisions, aiming at producing a certain quantity of output Y within
the technology that exists at a given time t, determine the absolute magnitude of the
total capital stock, its degree of capacity utilization, and its degree of automation.
The machines of the capital stock are designed and built for specific energy inputs
and require a certain amount of labor for handling, supervision, and maintenance.
The quantities of labor and energy that are combined with the capital stock of a

15



fixed degree of automation determine the degree of capacity utilization. The degree
of automation at time t is represented by the ratio of the actual capital stock K
to the capital stock Km(Y ) that would be required in order to produce the actual
output Y with the actual technology in the state of maximum automation. This
state is characterized by a combination of capital and energy such that adding one
more unskilled worker adds virtually nothing to gross economic output so that the
output elasticity of routine labor would be vanishingly small. In some manufacturing
sectors of industrialized countries this point actually does not seem to be far away.

It is obvious from an engineering point of view and by definition that both the
degree of capacity utilization and the degree of automation are i) functions of capital,
labor and energy and ii) cannot exceed the number 1. (In fact, even these days,
after 40 years during which the density of transistors on a microchip has doubled
every 18 months, the achievable state of automation of an economy is well below
1.) In other words, a production system cannot operate above design capacity,
and the maximum degree of automation cannot be exceeded. These are the two
fundamental technological constraints on the combinations of capital, labor and
energy in modern economies. They drastically change the conditions for economic
equilibrium that result from the behavioral assumptions of standard economics.
One such assumption is profit maximization, according to which the actions of all
economic agents are supposed to move the economy into a point of factor space where
the difference between output and total factor cost is maximum. Alternatively one
may follow Samuelson and Solow [35] and assume that: “... society maximizes the
(undiscounted) integral of all future utilities of consumption subject to the fact that
the sum of current consumption and of current capital formation is limited by what
the current capital stock can produce.”

The optimization calculus according to these two extremum principles is presented
in [9]. The following is the summary of its results. For the sake of notational
convenience we write the production factors K, L, E as X1, X2, X3, and the output
elasticities α, β, γ defined in eq. (4) as

ǫi ≡
Xi

Y

∂Y

∂Xi
i = 1, 2, 3 . (25)

Consider an economic system that produces its output Y with three factors of pro-
duction X1, X2, X3, whose combinations are subject to technological constraints, la-
beled by the indices A and B and expressed by the equations fA(X1, X2, X3, t) = 0,
fB(X1, X2, X3, t) = 0 with the help of slack variables. They concern the degree of
capacity utilization and the degree of automation. Their explicit forms are given in
[9]. Then, profit maximization under constant returns to scale results in the three
equilibrium conditions

ǫi =
Xi [pi + si]

∑

3

i=1
Xi [pi + si]

; i = 1, 2, 3 , (26)

which relate the output elasticities ǫi of factors Xi to the market prices pi per factor
unit and the factor shadow prices

si ≡ −µA
∂fA

∂Xi
− µB

∂fB

∂Xi
. (27)
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Here, µA and µB are the Lagrange multipliers of the two technological constraint
equations in the optimization calculus. Thus, the output elasticities in eq. (26)
are equal to “shadowed” cost shares. Intertemporal optimization of utility U as
a function of consumption C yields that the shadow price of capital contains an
additional term proportional to the time derivative of dU/dC. This term is small
for weakly decreasing U(C).

If there were no technological constraints, the Lagrange multipliers would be zero,
the equilibrium conditions would read

∂Y

∂K
= pK ,

∂Y

∂L
= pL ,

∂Y

∂E
= pE , (28)

the shadow prices si would vanish, and one would have the usual factor cost shares
on the r.h.s of eq. (26). That’s why standard economics assumes that in economic
equilibrium output elasticities equal factor cost shares. As shown in [9], this would
also justify the duality of production factors and factor prices, which is often used in
orthodox growth analyses. The essential information on production would be con-
tained in the profit function as the Legendre transform of the production function.
In the presence of technological constraints and non-zero shadow prices, however,
the Lagrange multipliers are finite and functions of the output elasticities ǫi, so
that the cost-share theorem and duality are not valid. For an understanding of the
economy, prices are not enough.

Appendix B

Twice differentiability of the production function y[k, l, e; t] with respect to the pro-
duction factors means that the second-order mixed derivatives of y with respect to
k, l, e must be equal:

∂2y

∂k∂l
=

∂2y

∂l∂k
,

∂2y

∂l∂e
=

∂2y

∂e∂l
,

∂2y

∂k∂e
=

∂2y

∂e∂k
. (29)

According to eq. (4) the first-order derivatives of y can be expressed by the output
elasticities:

∂y

∂k
=

y

k
α,

∂y

∂l
=

y

l
β,

∂y

∂e
=

y

e
γ . (30)

Differentiating the first of these equations with respect to l yields

∂2y

∂l∂k
=

∂yα/k

∂l
= (α/k)

∂y

∂l
+ (y/k)

∂α

∂l
= (α/k)

y

l
β + (y/k)

∂α

∂l
, (31)

where the last equality results from the second equation in (30). Differentiating the
second equation in (30) with respect to k yields

∂2y

∂k∂l
=

∂yβ/l

∂k
= (β/l)

∂y

∂k
+ (y/l)

∂β

∂k
= (β/l)

y

k
α + (y/l)

∂β

∂k
, (32)

where the last equality results from the first equation in (30). Because of the first
equation in (29) the r.h.s. of (31) and (32) must be equal. This is the case, if

l
∂α

∂l
= k

∂β

∂k
. (33)
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This is the first of the equations in (6) and in (8).
The second and the third equation in (6) are derived correspondingly. Inserting

the constant-returns-to-scale relation (7), i.e. γ = 1− α − β, into them one obtains

e
∂β

∂e
= −l

∂α

∂l
− l

∂β

∂l
(34)

and

e
∂α

∂e
= −k

∂α

∂k
− k

∂β

∂k
. (35)

The combination of eq. (33) with (34) and (35) yields the second and the third
partial differential equation in (8).

Appendix C

Table 1: Time-averaged LinEx output elasticities for the economic systems in Figs.
2–4 [8],[26]. R2 is the adjusted coefficient of determination. The best value of the
Durbin-Watson coefficient dW would be 2, indicating no autocorrelation at all.

System FRG TE FRG I Japan I USA TE
1960-2000 1960-99 1965-92 1960-96

ᾱ 0.38±0.09 0.37± 0.09 0.18± 0.07 0.51± 0.15
β̄ 0.15±0.05 0.11±0.07 0.09±0.09 0.14±0.14
γ̄ 0.47±0.1 0.52±0.09 0.73±0.16 0.35±0.11
δ̄ 0.19±0.2 0.12±0.13 0.14±0.19 0.10±0.17
R2 >0.999 0.996 0.999 0.999
dW 1.64 1.9 1.71 1.46
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